
Journal of Computer and System Sciences 70 (2005) 53–72
www.elsevier.com/locate/jcss

Wire length as a circuit complexity measure�

Robert A. Legenstein∗, Wolfgang Maass

Institute for Theoretical Computer Science, Technische Universität Graz, A-8010 Graz, Austria

Received 11 October 2001; received in revised form 7 June 2004

Available online 17 August 2004

Abstract

We introducewire lengthas a salient complexity measure for analyzing the circuit complexity of sensory process-
ing in biological neural systems. This new complexity measure is applied in this paper to two basic computational
problems that arise in translation- and scale-invariant pattern recognition, and hence appear to be useful as bench-
mark problems for sensory processing. We present new circuit design strategies for these benchmark problems
that can be implemented within realistic complexity bounds, in particular with linear or almost linear wire length.
Finally, we derive some general bounds which provide information about the relationship between new complexity
measure wire length and traditional circuit complexity measures.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Circuit complexity; Wire length; Sensory processing; VLSI-area

1. Introduction

Carver Mead had suggested that “economizing on wire is the single most important priority for both
nerves and chips”[14].

We show in this article that a rather simple and analytically tractable complexity measure can be defined
that approximates the wire length of circuits, at least for 3-dimensional circuits as found in many neural

� Research for this article was partially supported by the Fonds zur Förderung der wissenschaftlichen Forschung (FWF),
Austria, Project P15386, and PASCAL Project # IST2002-506778 of the European Union.∗ Corresponding author.

E-mail addresses:legi@igi.tu-graz.ac.at(R.A. Legenstein),maass@igi.tugraz.at(W. Maass).
URLs:http://www.igi.tugraz.at/legi, http://www.igi.tugraz.at/maass.

0022-0000/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2004.06.001

http://www.elsevier.com/locate/jcss
mailto:legi@igi.tu-graz.ac.at
mailto:maass@igi.tugraz.at
http://www.igi.tugraz.at/legi
http://www.igi.tugraz.at/maass

54 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

systems (e.g. the cortex) where crossings of dendrites and axons (i.e., “wires”) that connect the neurons
in a circuit present less of a problem than in 2-dimensional circuits where all wires need to be routed
within a few numbers of parallel layers without crossing or touching other wires in the same layer (except
if the circuit design calls for such connections). We demonstrate that the principle of minimizing this
complexity measure gives rise to interesting circuit designs for basic computational problems that arise in
typical sensory processing tasks. These circuits differ significantly from circuits that arise when traditional
circuit complexity measures such as the number of gates or the depth of the circuit are minimized. The
principle of minimizing wire length has already previously been used in a non-computational setting as an
interesting heuristics for understanding details of cortical circuitry if the axons and dendrites of neurons
are interpreted as “wires”[5–7,16]. The concepts and constructions presented in this article suggest new
ideas for understanding details of cortical circuitry also in a computational setting. In addition it turns
out that minimizing the wire length of circuits also yields circuit designs that consume little area in
VLSI, based on standard models for VLSI-area. The required wire length for some 1-dimensional pattern
matching problems is investigated for threshold circuits in[12].

After introducing our computational model in Section2, we begin in Section3 the investigation of
circuits for basic computational tasks that can be implemented within biologically realistic bounds with
regard to their number of gates and their wire length. We show in Section4 that two basic pattern
recognition tasks can be solved under these severe complexity constraints, one of them even with a
number of gates and a wire length that are both linear in the numbern of inputs. In Section5 we derive
general bounds for the wire length of a circuit in terms of the number of gates and in terms of the VLSI
area required by the circuit.

2. The computational model

The most frequently considered complexity measures in traditional circuit complexity theory are the
number (and types) of gates, as well as the depth of a circuit. We will follow traditional circuit complexity
theory in assuming that the underlying graph of each circuit is a directed graph without cycles. The depth
of a circuit is defined as the length of the longest directed path in the underlying graph, and can also
be interpreted as the computation time of the circuit. Most research has focused on the classification
of functions that can be computed by circuits whose number of gates is bounded by a polynomial in
the numbern of input variables. This implicitly also provides a polynomial—although typically quite
large—bound on the number of “wires” (defined as the edges in the underlying graph of the circuit), but
no bound on the total length of these wires.

We propose the following model for estimating the wire length of an abstract circuit design (which
is formally defined as a directed graph with nodes labeled by specific types of gates, or by input- or
output-variables):

Definition 1. Gates, input- and output-ports of a circuitCare placed on different nodes of a 2-dimensional
grid (with unit distance 1 between adjacent grid nodes). Connections between them are represented by
(unidirectional) wires that run through the grid-plane in any way that the designer wants; in particular
wires may cross with or without contact and need not run rectilinearly (wires are thought of as running in
the 3-dimensional space above the plane, without charge for vertical wire segments). Wires from a gate
or input port may branch and provide input to several other gates. We define the minimal value of the

R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72 55

sum of all wire lengths that can be achieved by any such arrangement as thewire lengthWL(C) of the
circuitC.

Special computational units that compute functions ofk inputs, for somek > 2, may be modeled as
subcircuits in the following way. Such subcircuits take one unit of time for their computation like all
the other gates, but occupy each a set ofk intersection points of the grid that are all connected by an
undirected wire (whose length contributes to the wire length) in some arbitrary fashion. Any one of these
k nodes may be used to provide one of thek inputs or to extract one of the outputs of the function.

Note that the arrangement of the input variables on the grid will in general leave many nodes empty,
which can be occupied by gates of the circuit. The last paragraph of Definition1 is introduced to make this
model also applicable to cases where some special functions ofk inputs such as the function computed
by a threshold gate1 are computed by neural microcircuits or in analog VLSI by efficient subcircuits that
employ a number of transistors, wire length and area that are all linear ink, with a setting time that is
independent ofk (see[11]).

The model allows that a wire from a gate or input port may branch and provide input to several other
gates. For reasonable bounds on the maximal fan-out (104 in the case of neural circuits) this is realistic
both for neural circuits and for VLSI.

The attractiveness of this model lies in its mathematical simplicity. Nevertheless it provides a use-
ful criterion for judging whether some abstract circuit can potentially be implemented in hardware or
“wetware” (i.e., biological neural circuits). We refer to Appendix6 for an analysis of our model from
the biological point of view. This analysis suggests that only those circuit architectures can possibly be
implemented in neural circuits that can be implemented according to Definition1 with a number of gates
that is almost linear in the numbern of inputs, and a wire length that is quadratic or subquadratic in
n—with the additional requirement that the constant factor in front of the asymptotic complexity bound
needs to have a value not much larger than 1. Since most practically arising asymptotic bounds involve
larger constant factors, one should focus on circuit architectures that can be implemented in our model
with clearly subquadratic bounds for their wire length.

Our model for estimating the wire length is easy to handle since one does not have to worry about
how exactly the wires need to be routed in order to avoid interference. This laxness may be justified
for modeling cortical circuits—since their 2 mm vertical dimension leaves a lot of room to route axons
whose thickness lies in the�m range. But it is not a priori justified for estimating the wire length required
by a VLSI-implementation of the same circuit, since currently available VLSI-technologies allow just a
small number (typically less than 10) of horizontal layers in which wires can be routed. However it turns
out that those circuit designs that emerge from minimizing wire length for the computational problems
considered in this article are also very area-efficient in a common model for VLSI-area (see the next
section).

2.1. The VLSI model

We refer to Section 12.2 in[17] for the precise definition of the abstract model for VLSI-area to which
the theorems in this article refer. It is assumed there that gates, input- and output-ports and wires cover
rectilinear areas with a width and separation of at least�. Areas occupied by different gates, input- and

1A threshold gate computes a Boolean functionT : {0,1}k → {0,1} of the formT (x1, . . . , xk) = 1 ⇔ ∑k
i=1wixi �w0.

56 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

output-ports are not allowed to intersect with one another. Areas occupied by wires may intersect with
areas occupied by gates, input- and output-ports and also with other wires, but there is a constant bound�
on the number of wire areas to which a point of the plane may belong. The complexity measure induced
by this model is theareaof the smallest rectangle that encloses the circuit.

Since, we also consider in this article circuits that involve gates with a large number of inputs such as
threshold gates, we extend the model for VLSI-area by assuming that a threshold gate withk inputs can
be implemented byk+1 gates (kof them for multiplying a binary input with a weight, one for comparing
the weighted sum with the threshold) that are linearly connected by a wire. We follow[17] in assuming
that in the VLSI-model one unit of time is needed to transmit a bit along a wire (of any length), and also
for each gate switching. However in contrast to[17] we always assume that all inputs are presented in
parallel.

3. Useful design tools

A basic structure for area efficient computing is the well-known H-tree (see, e.g.[15,17]). An H-tree
makes optimal use of area and wire length if then inputs are allowed to be arranged as an

√
n×√

n array
on the plane. Fig.1a shows the H-treeH1 with 4 darkly shaded leaves (inputs) and lightly shaded inner
nodes of the binary tree.Hk+1 can be constructed by replacing the leaves ofHk with H-treesH1. Since
H1 is a tree with four leaves,Hk has 4k leaves. In Fig.1b, each leaf ofH1 was replaced by an H-treeH1.
The depth of a nodev in an H-tree is the length of the shortest path fromv to a leaf. Note that a recursive
step in the construction of an H-tree adds depth 2 to the graph. Hence, it will be more convenient to talk
aboutlevelsrather than depth, where a nodev is on leveli if v is in depth 2i − 1 or in depth 2i. So, the
nodes in depth 1 and 2 are on level 1 (these are the nodes of the last recursive step in the construction of
the H-tree), and the root of an H-treeHk is on levelk.

The idea of the H-tree was extended by Leiserson in the context of parallel computing (see[13]). His
fat-trees are tree-like structures where each edge of the underlying tree consists of several communication
wires. We use a similar structure which we will call anextended H-tree. Our layout will differ from the
H-tree layout in a crucial point. Internal nodes of the H-tree are replaced by groups of several gates, and
the connections between these groups consist of “busses” rather than of single wires. More precisely,

(a) (b)

Fig. 1. The H-tree layout. Dark rectangles are leaves, and light rectangles are inner nodes: (a)H1 is a tree layout for 4 leaves;
(b)H2. Hk+1 is constructed recursively by replacing the leaves ofHk with H-treesH1 (Figure taken from[17]).

R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72 57

each “node” on leveli of an H-tree is a circuit withO(i) gates andO(i2) wire length and area with side
lengthO(i). Instead of a single edge in an H-tree one has a “bus” consisting ofO(i) wires if the bus
connects a node on leveli with a node on leveli or i + 1.

One has to be careful in talking about levels and nodes in an extended H-tree, since the circuit in a
“node” might consist of several gates and might even have non-constant depth. However each extended
H-tree has an underlying H-tree and the levels are counted with regard to this underlying H-tree.

Lemma 1. Let T be an extended H-tree on n leaves withO(i) wires in a bus on level i, O(i) gates at a
node on level i andO(i2) wire length at a node on level i. Then T consists ofO(n) gates, and T can be
implemented withO(n) wire length. If the side length of a node on level i isO(i) in the VLSI-model, the
layout usesO(n) area in the VLSI-model.

Proof.We will not only derive asymptotic bounds, but also pay attention to the size of constant factors.
To achieve this, we will use the recursive construction of the extended H-tree to derive recursive formulas
on size, side-length and wire length of the layout. The nodes on level 1 play a special role in the circuit.
There aren4 extended H-treesH1 on level 1 that compute, in parallel, the basic values for the subsequent
“conquer steps”. LetS(H1),C(H1) andWL(H1) denote the side-length, size and wire length of one such
H1-circuit.

We start the proof by deriving an upper bound on the side-lengthS(Hk) of the extended H-treeHk.
Since the number of gates in a node on leveli is O(i), we can assume that the side-length of a node on
level i is bounded byci for some suitable constantc. The side-length ofHk is the sum of the side-lengths
of two H-treesHk−1 and the side length of a node on levelk (see Fig.2). Hence, the following recurrence
holds:

S(Hk)�2S(Hk−1) + ck. (1)

The solution of Eq. (1) yields the boundS(Hk)�2k−1S(H1) + 3c
2 2k. Since n = 4k, we have

S(Hk)�
√
n(

S(H1)
2 + 3c

2) = O(
√
n). The area of the layout in the VLSI-model if the sidelength of

nodes on leveli is bounded byci is therefore

area(Hk) = S2(Hk)�
(S(H1)

2
+ 3c

2

)2
n = O(n).

A similar recurrence holds for the number of gatesC(Hk) in the circuit for the H-treeHk: Let the number
of gates at a node on leveli of the extended H-tree be bounded bysi for a suitable constants (recall that
a recursive step in the H-tree layout adds 3 inner nodes). We get a recursive formula which we iterate
k − 1 times:

C(Hk) � 4C(Hk−1) + 3 · s · k (2)

� 4k−1C(H1) + 3 · s
k−2∑
j=0

4j (k − j).

Since
∑k−2

j=0 4j (k − j)� 77
36 4k the solution of Eq. (2) is

C(Hk)�n

(
1

4
C(H1) + 77

12
s

)
. (3)

58 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

Fig. 2. The H-treeHi has wires from four H-treesHi−1, the wires of three inner nodes, and the wires of the busses. An inner
node has a wire length ofd · i2, and a bus consists ofe · i wires.

Now we use a similar argument to estimate the wire length. The wire length of the layout consists of the
wire lengths at the inner nodes and the wire lengths of the “busses”. Letdbe a constant such that the wire
length of a node on leveli is bounded byd · i2 . Also, let the number of wires of a “bus” from a node
on leveli to a node on leveli or i + 1 be bounded bye · i. The basis for the recursive calculation of the
wire length for an extended H-treeHi is illustrated in Fig.2. We get a recursive formula which we iterate
k − 1 times:

WL(Hk) � 4WL(Hk−1) + 2k · e · S(Hk−1) + 3d · k2 (4)

� 4WL(Hk−1) + k · e(S(H1) + 3c)2k−1 + 3d · k2,

WL(Hk) � 4k−1WL(H1) + 2k−1e(S(H1) + 3c)
k−2∑
j=0

2j (k − j)

+3d
k−2∑
j=0

4j (k − j)2. (5)

Since
∑k−2

j=0 2j (k − j)� 3
22k and

∑k−2
j=0 4j (k − j)2� 77

108 4k we get:

WL(Hk) � 4k−1WL(H1) + 3

2
22k−1e(S(H1) + 3c) + 77

36
d4k

�
1

4
n · WL(H1) + 3

4
n · e(S(H1) + 3c) + 77

36
d · n

WL(Hk) � n

(
1

4
WL(H1) + 3

4
e(S(H1) + 3c) + 77

36
d

)
= O(n). � (6)

R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72 59

Fig. 3. Layout of an efficient prefix circuit with fan-in�. Dark shaded boxes are gates, and the light shaded box is the recursive
application of the circuit.

Another widely used strategy in parallel computation is the computation of prefixes in parallel prefix
circuits. We will use parallel prefix circuits in Section4. Consider a setX of elements with an associative
binary operation. We denote the binary operation by juxtaposition of the elements inX. Suppose we have
functional gates such that each gate with inputsx1, . . . , xk computes the productx1x2 . . . xk, for some
fan-ink.

There exist efficient circuits for such computations (see e.g.[17]). We show how a parallel prefix
circuit can be implemented in our model and the VLSI-model. Lemma2 gives upper bounds on a circuit
of such gates with maximal fan-in� that computes the prefixesx1, x1x2, . . . , x1x2 . . . xn. For simplicity,
we assume thatn is a power of�.

Lemma 2. If n inputs x1, . . . , xn are arranged on a row of a grid, then the prefixesx1, x1x2, . . .,
x1x2 . . . xn can be computed by a circuit with maximum fan-in� ∈ {2, . . . , n}, size�2n in depth =
2logn

log� . In our model the circuit uses only a constant number of rows and the wire length isO(
logn
log�n�).

In the VLSI-model the circuit uses an area�n� logn
log� .

Proof. We divide the inputsx1, . . . , xn into n
� consecutive subintervals and rename the inputs to

x1,1, . . . , x1,�, x2,1, . . . , x2,�, . . . , x n
� ,1

, . . . , x n
� ,�

. We denote the outputs of the circuit asy1, . . . , yn such
thatyi = x1 . . . xi . It will be convenient to divide the outputs into consecutive subintervals in the same
manner as the inputs. Then, the outputs of the circuit can be written asy1,1, . . . , y1,�, y2,1, . . . , y2,�, . . . ,

y n
� ,1

, . . . , y n
� ,�

whereyi,j = y(i−1)�+j . These intervals for inputs and outputs are illustrated in Fig.3.
In the first step, we compute the prefixes for each group of inputsxi,1, . . . , xi,�, i.e. we compute

x′
i,j = xi,1xi,2 . . . xi,j for i = 1, . . . , n

� and j = 1, . . . ,�. In the second step, we recursively apply
the prefix computation onx′

1,�, x
′
2,�, . . . , x

′
n
� ,�

, gaining the prefixesyi,� = x1x2 . . . xi·�. In the third

step, we finally fill up the gaps between those prefixes withyi,j = y(i−1),�x
′
i,j for i = 2, . . . , n

� and
j = 1, . . . ,�−1. The layout and structure of the circuit is shown in Fig.3. Fig.4 shows the whole circuit
for � = 2, n = 8.

60 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

x x x1 3 4 7 82x x x x x

y y y y y y y y
2 3 4 5 6 7 81

5 6

First recursive step
tree-like structure

Second recursive step
fill the gaps

Fig. 4. The prefix circuit for� = 2 andn = 5. It can be decomposed into two parts. The upper part is a tree. (Based on Fig. 2.13
in [17].)

Since the construction of the circuit and layout is recursive, we can give recursive formulas for size,
depth, area and wire length of the circuit. LetPREFn denote such a layout withn inputs. The first
computational step and the third computational step each consist ofn

�(� − 1) gates. The recursive step
computes the prefixes onn� inputs:

C(PREFn) �
n

�
(� − 1) + C(PREF

n
�) + n

�
(� − 1)

= 2n − 2
n

�
+ C(PREF

n
�).

The solution to this recurrence isC(PREFn)�2n, sinceC(PREF 1) = 0. Each recursive step adds
depth 2 to the circuit depth:

depth(PREFn) = 2 + depth(PREF
n
�).

The solution to this recurrence isdepth(PREFn) = 2 logn
log� , sincedepth(1) = 0. To bound the occupied

area in the VLSI-model, we compute the vertical side lengthS(PREFn) of the layout. Letarea(L)
denote the area used by a layoutL.

S(PREF 1) = 0

S(PREFn) � (� − 1) + S(PREF
n
�) + 1 = �

logn

log�
, (7)

area(PREFn) � nS(PREFn) = n�
logn

log�
. (8)

Note that this area bound is derived for the VLSI-model. In our model, there is a better layout since we
do not need space for wires. Nevertheless, Fig.3 gives an idea of a recursive formula for the wire length
of horizontalwires:

WL(PREF 1) = 0

WL(PREFn) �
n

�
�2 + �WL(PREF

n
�) + n

= n� + n + �WL(PREF
n
�) = n(� + 1)

logn

log�
.

R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72 61

. . . .

. . . .

level 0

level 1

level 2

level 3

Fig. 5. Tree layout on a grid for� = 3. The upper layout shows a leveled arrangement of inner nodes. The arrows and filled
circles indicate the rearrangement of inner nodes. We gain a layout which uses just two rows (lower layout).

Since the circuit has logarithmic depth,verticalwires have a summed length ofO(n� logn
log�) and the upper

bound for wire length is:

WL(PREFn) = O

(
n�

logn

log�

)
. (9)

The advantage of this circuit in our model is that one can implement it in areaO(n) without increasing
the wire length. As shown in Fig.4 for � = 2, the circuit implements a�-ary tree to compute larger
and larger prefixes (first recursive step) and then fills up gaps in the computed prefixes (second recursive
step). We show that the tree can be implemented by using two rows.

The area-efficient implementation of a tree is illustrated in Fig.5. As shown in Fig.5, we label the
nodes of the tree such that leaves are in level 0, inner nodes which are incident to leaves are in level 1
and so on. More formally, a nodev is in level i if the shortest path fromv to some leaf hasi edges. For
a nodev on leveli, denote the subgraph consisting of all nodes on levels 0, . . . , i and all edges between
them as thesubtree of v. We start with a layoutL for a �-ary tree where inner nodes are placed beneath
the rightmost root of their predecessors’ subtrees (for an inner node on leveli�2, these are the subtrees
of adjacent nodes on leveli − 1). This is shown in the upper graph of Fig.5. Note thatL is the layout of
the tree in the prefix circuit (confirm Fig.4). Furthermore,L has wire lengthO(n logn). We show how
to rearrange the inner nodes ofL to achieve an area-efficient layoutL′. ForL′, we place each inner node
beneath the leftmost leaf of its rightmost subtree (indicated by arrows and filled circles in Fig.5). The
layoutL′ is shown in the lower graph of Fig.5. It is easy to show that this location is not occupied by
another node, and that the wire length ofL′ is bounded from above by the wire length of the previous
layoutL. But it uses just two rows on the grid.

In order to useL′ in the layout of a prefix circuit, we note thatL′ differs fromL since inner nodes
are horizontally displaced as compared toL. Since the outputs of these nodes are needed for further
computation in the prefix circuit, we need to check if this displacement results in a significant increase
in wire length. However, if the summed displacement over all inner nodes is small, one could simply
introduce additional wires that map the outputs of inner nodes back to the horizontal positions given by
L. Then, the horizontal displacement can be ignored. This is shown in the following. There aren

�i nodes

in level i. The horizontal displacement of a node in leveli is �i−1 and nodes in level 1 are not displaced.
Hence, the summed displacement of nodes is:

∑log� n

i=2 �i−1 n

�i � n
�

logn
log� .

62 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

It remains to be shown that the computations in the second recursion step (see Fig.4) can be implemented
in one row. Just observe that whenever there is a gate in this second recursive step, it computes an output
of the circuit. Hence in the second recursive step, each gate can be paced above one output in a single
row. This concludes the layout of the prefix circuit.�

4. Global pattern detection in 2-dimensional maps

Several of the most successful computer vision methods for generic object recognition[19,8,2]represent
objects by 2-dimensional spatial relationships between local features or “interest points” (e.g. corners,
i.e., points where two edges meet at a certain angle, or centric interest points such as eyes in a face); see
Fig.6. Since the visual system of most organisms transforms light from the outside world in a topographic
manner into a corresponding 2-dimensional activation pattern of neurons in primary visual cortex, it is
not impossible that brains apply a related method for generic object recognition.

We formalize such 2-dimensional global pattern detection problems by assuming that the input consists
of 2-dimensional matricesA,B, etc. of binary variablesaij , bij . Each index pair〈i, j〉 of an input variable
can be thought of as representing a location in a 2-dimensional image. We assume thataij = 1 if and only
if featurea is detected at location〈i, j〉 and thatbij = 1 if and only if featureb is detected at location
〈i, j〉.

We can present such input in our model by reserving a sub-square (i.e. adjacent nodes of the grid within
a square) within the 2-dimensional grid for each index pair〈i, j〉, where the input variablesaij , bij , etc.
are given on adjacent nodes of this grid. To avoid cumbersome notation, we will in the following skip
double indexing of input variables and represent the input by arraysa = 〈a1, . . . , an〉, b = 〈b1, . . . , bn〉,
etc. of binary variables that are arranged on a 2-dimensional square grid. To make this more precise we
assume that indicesi andj represent pairs〈i1, i2〉, 〈j1, j2〉 of coordinates. Then “input locationj is above
and to the right of input locationi” means:i1 < j1 andi2 < j2. For functions considered in this article,
the circuit complexity is not altered if one or both of the “<” is replaced by “�” in the notion above.
Since, we assume that this spatial arrangement of input variables reflects spatial relations in the outside
world, many salient examples for global pattern detection problems require the computation of functions
such as

Pn
D(a, b) =




1 if there existi andj so thatai = bj = 1 and input locationj
is above and to the right of input locationi,

0 else.

Fig. 6. Examples of some local features (marked), whose spatial arrangement is essential for recognizing an object.

R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72 63

C

CC

C1

2

4

3

Fig. 7. The input areaC is divided into four sub-squaresCk , which are numbered in a counterclockwise fashion.

If Pn
D(a, b) = 1 then we refer to indicesi andj for which the first clause in this definition is satisfied as

“witnesses” (for the fact thatPn
D(a, b) = 1).

Theorem 1. The functionPn
D can be computed and witnesses i and j withai = bj = 1 can be exhibited

if they exist by a circuit with wire lengthO(n), consisting ofO(n) Boolean gates of fan-in2 and fan-out
2 in depthO(logn · log logn).
The depth of the circuit can be reduced toO(logn) if one employs threshold gates with fan-inlogn.

This can also be done with wire lengthO(n). In the VLSI-model, this circuit usesO(n) area.

Proof. This circuit design is based on a divide-and-conquer approach. On first sight it appears that such
an approach is bound to fail for computingPn

D, since there may exist for example just a single pair of
witnessesi andj with the desired properties, but the chosen subdivision of the input area happens to assign
i andj todifferentcomponents of the subdivision. Hence the evaluation ofPD for each of the components
is of little help for the evaluation ofPn

D for the full input area.
In order to make the divide-and-conquer approach feasible it is essential that one computes for each

component of the subdivision more than just whetherPD holds for this component. If one divides iter-
atively each square into 4 sub-squaresC1, C2, C3, C4, (see Fig.7) then it suffices to compute for each
sub-squareCk the following data:

left(Ck) := the x-coordinate of the leftmost locationi in Ck with ai = 1
right(Ck) := the x-coordinate of the rightmost locationj in Ck with bj = 1
down(Ck) := the y-coordinate of the lowest locationi in Ck with ai = 1

up(Ck) := the y-coordinate of the highest locationj in Ck with bj = 1

found(Ck) :=
{

1 if PD applied toCk outputs 1,
0 else.

We assume that each of the first four functions assumes the value 0 onCk if and only if there exists no
locationi or j in Ck with the desired property. Thus all coordinates are assumed to be numbers�1.

The essential property of these 5 functions is thatleft(C), right(C), down(C), up(C) andfound(C) can
be computed from the values of these 5 functions for the 4 sub-squaresC1, C2, C3, C4. This is obvious
for left(C), right(C), down(C), up(C), requiring just comparisons of pairs of(b+1)-bit natural numbers

64 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

if eachCk is responsible for a sub-square of the input-array of size 2b × 2b. The value offound(C) can
be computed in the following fashion, assuming that the componentsCk that make upC are numbered
in a counterclockwise fashion, starting withC1 in the upper left quadrangle (see Fig.7):

found(C) = 1

⇔
4∨

k=1

found(Ck) = 1 ∨

0 < down(C1) < up(C4) ∨
0 < down(C2) < up(C3) ∨
((0 < down(C2)) ∧ (0 < up(C4))) ∨
0 < left(C2) < right(C1) ∨
0 < left(C3) < right(C4).

Obviously this algorithm makes use of the fact that the area is not subdivided in anarbitrary fashion into
components, but in a way which is consistent with the map, i.e. with the spatial relationship of locations
in the outside world. Or, with a variation of a well-known design philosophy of Carver Mead, one could
say thatspace represents itselfin this algorithm design.

The layout of a circuit forPn
D with small wire length is based on the extended H-tree discussed in

Section3. We now show how the extended H-tree can be used as a layout strategy for a circuit that
implements the previously developed algorithm for solvingPn

D. The extended H-tree layout implements
the structure of the algorithm by recursively dividing the input-area into four axis-parallel sub-squares.
The computations needed in a node on leveli of the H-tree can be carried out by a circuit of sizeO(i)

andO(i2) wire length and area, which is placed at that node. The depth of a circuit at a node isO(1) if
threshold gates of fan-inO(logn) are used andO(log i) if Boolean gates of fan-in 2 are used. Lemma
1 shows that the extended H-tree stays within the claimed complexity bounds. The depth of an H-tree is
O(logn), hence if the circuits at the nodes have depthO(1), the extended H-tree has depthO(logn). If
the circuits at the nodes have depthO(log i), the depth of the extended H-tree isO(logn · log logn).

An extension to the circuit that reports a pair of witnesses is straight forward.�

The linear wire length of this circuit isoptimalup to a constant factor for any circuit whose output
depends on all of itsn inputs. Note that most connections in this circuit are local, just like in a biological
neural circuit. Thus, we see that minimizing wire length tends to generate biology-like circuit structures.

However, the tree-like circuit structure results in considerable circuit-depth for large input-size. In
biological neural systems, neural gates of large fan-in are used to implement shallow circuits, whereas
the circuit design above is based on gates of fan-in 2 or log(n) which is comparatively small.

The next theorem shows that one can computePn
D faster (i.e. by a circuit with smaller depth) if one

can afford a somewhat larger wire length. This circuit construction, which is based on AND/OR gates of
limited fan-in�, has the additional advantage that it can exhibitall j that can be used as witness together
with somei. This property allows us to “chain” the global pattern detection problem formalized through
the functionPn

D, and to decide within the same complexity bound whether for any fixed numberkof input

vectorsa(1), . . . , a(k) from {0,1}n there exist locationsi(1), . . . , i(k) so thata(m)

i(m) = 1 for m = 1, . . . , k

and locationi(m+1) lies to the right and above locationi(m) for m = 1, . . . , k − 1. In fact, one can also

R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72 65

(a) (b) (c)

Fig. 8. ComputingPD with prefix circuits. Crosses mark locations where a featurea occurs, open circles mark locations where
a featuresb is present: (a) all locations that are in the same row and to the right of some featurea = 1 are marked as dotted
lines; (b) all locations that are to the right of and above some featurea = 1 are shaded; (c) all locationsi with bi = 1 in this area
are marked with filled circles.

compute ak-tuple of witnessesi(1), . . . , i(k) within the same complexity bounds, provided it exists. This
circuit design is based on an efficient layout for prefix computations.

Theorem 2. For any given n and� ∈ {2, . . . ,√n} one can compute the functionPn
D in depthO(

logn
log�)

by a circuit consisting ofO(n) AND/OR gates of fan-in��, with wire lengthO(n · � · logn
log�).

In the VLSI-model, the circuit usesO(n · (� · logn
log�)

2) area.

Proof.The main idea in the construction of the circuit is illustrated in Fig.8. In Fig.8a, a two dimensional
input-assignment forPn

D is shown. Crosses mark locations where a featurea is present and open circles
mark locations where a featureb occurs. Every featureb that is located in the shaded region in Fig.8b is
located to the right of and above some present featurea. Hence, if there is some locationj that is in the
shaded region of Fig.8b andbj = 1, then the value ofPn

D(a, b) is 1. We introduce indicator variables
a′
j (j = 1, . . . , n), wherea′

j = 1 if the locationj is to the right and above to some locationi with ai = 1,
anda′

j = 0 otherwise. (In Fig.8b, a′
j = 1, if j is a location in the shaded region). It follows thatPn

D has
value 1 if there exists some locationj such thata′

j ∧ bj = 1.
Hence, the problem is reduced to the problem of computing the values ofa′

j for all locationsj =
1, . . . , n. A straight-forward implementation would lead either to large depth or to large wire length.
In a 1-dimensional scenario, the problem would be equivalent to the following one. Suppose one has a
one dimensional array of pixelsx1, . . . , xn. Then the equivalent problem to computinga′

j would be to
compute the values ofx′

1, . . . , x
′
n wherex′

j = 1 if and only if there is axi = 1 that is to the left ofxj .
This is the problem of computing theprefixes: x′

1 = x1, x
′
2 = x1 ∨ x2, x

′
3 = x1 ∨ x2 ∨ x3, . . . , x

′
n =

x1 ∨ x2 ∨ x3 ∨ . . . ∨ xn. Such a computation is called aprefix computation, see also Section3. In
the 2-dimensional case, we just need to apply prefix computations on all rows and subsequent prefix
computations on the columns of the outcomes. A similar serial algorithm for multidimensional prefix
computation is given in[9]. By applying the prefix computation on rows ofa, one can determine the
locations in the input plane that are in the same row as some featureai = 1 and located to the right of
ai . This is illustrated in Fig.8a. Here, the horizontal lines in the input space represent locations where
indicator variables have value 1 after that step.

66 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

a b

a
a' b'

i i

i

i i

horizontal
prefix computation

ve
rt

ic
al

pr
ef

ix

ve
rt

ic
al

pr
ef

ix

a b

a
a' b'

i+1 i+1

i+1

i+1 i+1

Fig. 9. Detail of the circuit layout for computingPn
D

using prefix circuits. The horizontal prefix circuit computes prefixesâ on
featuresa in the same row with featureai . Vertical prefix circuits are applied to the results of the horizontal prefix circuits to
computea′

i
. Another AND gate computesb′

i
= bi ∧ a′

i
.

Let us call the outputs of the horizontal prefix circuitsâj , wherej = 1, . . . , n denotes locations in
the same manner as the inputs are indexed. Then, a locationj is in the right spatial relation to some
featureai = 1 at locationi, if it is above of some locationkwith âk = 1. Hence, we can apply the same
prefix-operation on columns of these intermediate variablesâ1, . . . , ân to compute the correct value of
all indicator variables (see Fig.8b). Now, b′

i = a′
i ∧ bi has value 1 if locationi is in the right spatial

relation with some present featurea andbi = 1. (This is not exactly what we want, since this would
also mark b-features that lie in the same row or column with some a-feature. However, we can also AND
the b-feature with the marking-bit that is one pixel to the left and below it.) In Fig.8c, the locationsl
with b′

l = 1 are marked with filled circles. Finally, an OR over allb′
i ’s outputsPn

D(a, b) for all inputs
a, b ∈ {0,1}n.

The circuit consists of prefix computations for every row of featurea (
√
n many rows) that compute

â1, . . . , ân.Then, prefix circuits are applied on columns of the outputs of these circuits (
√
nmany columns)

to computea′
1, . . . , a

′
n. Furthermore,nAND gates are used for the computation ofb′

i = a′
i ∧ bi . A detail

of the circuit layout is shown in Fig.9. Finally, there is one OR with inputsb′
1, . . . , b

′
n. This OR can

be implemented by a tree of OR gates with fan-in� in order to reduce the wire length. This adds depth
O(

logn
log�) to the circuit.

LetC(PREFn),depth(PREFn) andWL(PREFn) denote the size, depth and wire length of a prefix
circuit withn inputs. Hence, the circuit has sizeO(

√
nC(PREF

√
n)+n)and depthO(depth(PREF

√
n)+

logn
log�). By Lemma2, this results in sizeO(n) and depthO(

logn
log�).

In the following, we give upper bounds on wire length and area for this circuit. Lemma2 gives upper
bounds on wire length and area for an efficient prefix circuit consisting of gates with maximal fan-in�
(� ∈ {2, . . . ,√n}). There is a prefix computation of

√
n inputs for each row ofa in the input plane.

We can place this prefix circuit in between the rows of inputs. Note that if these circuits would need too
many rows, we would have to place the input rows far away from each other. This would influence the
wire length of the subsequent prefix circuits. But since by Lemma2 each prefix circuit uses a constant
number of rows in our model, the computations for rows and columns do not affect each other. Therefore
the wire length used for this part of the computation isO(

√
n
√
n� logn

log�) = O(n� logn
log�). The AND gates

that computeb′
i = a′

i ∧ bi needO(n) wire length all together. We implement the OR ofb′
1, . . . , b

′
n as

a 2-dimensional tree of fan-in�. This influences the size and the depth of the circuit only by a constant

R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72 67

factor. It can be shown that a 2-dimensional tree of fan-in� has wire lengthO(n
√

�). Hence, the circuit

hasWL = O
(
n · � · logn

log�

)
, depth = O

(
logn
log�

)
, andsize = O(n).

The situation is different in the VLSI-model. The crucial part of the layout is the prefix circuits. In
the VLSI-model, these circuits have side-lengthsO(� logn

log�) andO(
√
n) each (see proof of Lemma2).

Nevertheless, we layout these circuits in the same manner as above. Since we need one prefix circuit for
every row and every column, the side length of the layout for the prefix circuits isO(

√
n� logn

log�). Hence,

the circuit forPn
D can be implemented within an area ofO

(
n ·

(
� · logn

log�

)2)
. �

An advantage of this approach is that we computedall the witnesses inb for PD. Hence we can use
this information to compare these witnesses with some featurec. In other words, we can compute if
there is some featurea beneath and to the left of some featurebwhich is beneath and to the left of some
featurec and so on. Denote this function withPn,k

D for somek�2. Considerk�2 different feature types

a(1), . . . , a(k). Pn,k
D is defined as

P
n,k
D (a(1), . . . , a(k)) =




1 if there existi(1), . . . , i(k) so that
a
(l)

i(l)
= 1 for all l ∈ {1, k} and input

locationi(l+1) is to the right and
above of input locationi(l)

for all l ∈ {1, k − 1},
0 else.

Consider a multidimensional functionWn,k : {0,1}k·n → {0,1}n that reports all locationsi(k) (i.e.
positions in the last feature mapa(k)) that, together with some locationsi(1), . . . , i(k), satisfy the upper
clause in the definition above. Fork = 2, this function can be written as

Wn,2(a, b) = (w1, . . . , wn), where

wj =




1 if bj = 1 and there existi so that
ai = 1 and input locationj
is above and to the right of input
locationi,

0 else.

Fork > 2, one can define this function recursively as

Wn,k(a(1), . . . , a(k)) = Wn,2(Wn,k−1(a(1), . . . , a(k−1)), a(k)).

Recall that we computedw1, . . . , wn in the circuit forPn
D and called these valuesb′

1, . . . , b
′
n in the proof

of Theorem2. Hence, by the recursive definition ofWn,k, one just has to apply this circuitk − 1 times to
computeWn,k.Pn,k

D is 1 if and only if a witness exists, i.e. at least one component inWn,k(a(1), . . . , a(k))

is 1. Therefore, Corollary1 holds:

Corollary 1. For any given n, k�2 and� ∈ {2, . . . ,√n} one can compute the functionPn,k
D in depth

O(k
logn
log�) by a circuit consisting ofO(k ·n)AND/ORgates of fan-in��,withwire lengthO(k ·n·�· logn

log�)

and areaO(n · (k · � · logn
log�)

2).

68 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

Another essential ingredient of translation- and scale-invariant global pattern recognition is the capa-
bility to detect whether a local featurec occurs in between locationsi and j where the local featuresa
andb occur. This global pattern detection problem is formalized through the following functionPn

I :
{0,1}3n → {0,1}:
If

∑
a = ∑

b = 1 thenPn
I (a, b, c) = 1, if and only if there existi, j, k so that input location k lies

on the middle of the line between locations i and j, andai = bj = ck = 1.
This functionPn

I can be computed very fast by circuits with the least possible wire length (up to a
constant factor), using threshold gates of fan-in up to

√
n:

Theorem 3. The functionPn
I can be computed—and witnesses can be exhibited—by a circuit with wire

length and areaO(n), consisting ofO(n) Boolean gates of fan-in2andO(
√
n) threshold gates of fan-in√

n in depth7.

Proof.Omitted. �

5. Relationship between wire length and other circuit complexity measures

The most common complexity measure in traditional circuit complexity theory is the circuit sizeC(f)

of a Boolean functionf : {0,1}n → {0,1}. C(f) is the smallest number of gates in any feedforward
circuit for f over some basis�. The basis� is normally indicated by writingC�(f). We omit this index
and assume that gates of the optimal circuits forC(f) andWL(f) are drawn from the same basis�. We
assume thatf depends on each of itsn variables. The relationship between the wire length and the circuit
size of a function is given by the following lemma.

Theorem 4. The wire lengthWL(f) of a functionf : {0,1}n → {0,1} relates to its circuit sizeC(f)

in the following manner:

C(f) + n − 1�WL(f)�
1

2
C(f)(C(f) − 1) + nmax{n,C(f)}.

Proof. To show the first inequality, note that each input to the circuit as well as each gate of the circuit
contributes to the output. Hence there is at least one edge from each input port to some gate and each gate
except the output gate has fan-out at least one. Since gates and input ports are separated by unit distance,
each such connection has at least unit length. The first inequality follows.

To show the second inequality, we construct a layout for some circuitCwith circuit sizeC(f). Since
the circuit is feedforward, we can label the gates ofC byG1, . . . ,GC(f) such thatGi does not get input
from gateGj for all 1�i < j�C(f). Arrange the gates on a row of the grid such that gateGi is one
unit to the left ofGi+1 (1�i < C(f)). In this arrangement all gates that receive input from some gate
Gi are to the right ofGi (see Fig.10). Since outputs may spread, the wire length to connectGi to all
of its successors is at mostC(f) − i. This results in a wire length of12C(f)(C(f) − 1) for connections
between gates of the circuit. Furthermore, arrange the input ports of the circuit on the row one unit above
the gates. In the worst case, each input port is connected to each gate. The wire length needed to connect
one of then input ports with all the gates is bounded byn if n > C(f) and byC(f) if n < C(f). Hence,

R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72 69

.

.G G

x x x

1 2

1 2 n

G3 G C(f)

Fig. 10. A layout for an arbitrary circuit whose wire length can easily be estimated in terms ofn andC(f). Filled circles
x1, . . . , xn are input ports and open circlesG1, . . . ,GC(f) are gates.

the wire length needed to connect input ports to gates is at mostnmax{n,C(f)}. This yields the second
summand in the claimed upper bound forWL(f). �

Another interesting question is, how the wire length of a functionf relates to the area needed to
implementf in VLSI. For the VLSI-model discussed in Section1 with gates of fan-in 2, we show that the
wire length is bounded by the area needed to computef.

Theorem 5. If the functionf : {0,1}n → {0,1} can be computed in a feedforward manner in VLSI with
� layers, separation� and area A, then the wire length of f is bounded by

WL(f) = O

(
�

�2A

)
.

Proof.We construct from a given VLSI-circuit forf a layout in our model for bounding its wire length.
We first superimpose a grid of grid-width�/2 and areaA over the VLSI-layout. Since gates, ports and
wires have at least width� there is a grid-point in any gate, and any two grid-points in connected gates
can be connected by a grid-path that runs in the area of the gates and their connecting wire.

In the following we will not distinguish between gates, input ports and output ports. Inputs ports can
be treated as gates without inputs and output ports are simply gates without outputs. For each gateG in
the VLSI layout, we use a single grid nodenG within the area ofG to represent G in our model.

To connect a gateGwith its successorsH1, . . . , Hm, build a spanning tree on grid nodes and grid edges
in the area of the VLSI-wires and gates fromG to its successors that connectsnG with the corresponding
input-nodesnH1, . . . , nHm . We refer to this spanning tree as theoutput-treeof G. Hence, a gateG is
connected to some gateH in the constructed layout, if and only ifG is connected toH in the VLSI-
circuit.

We will now bound the number of wires in the constructed layout that use a given grid-edgee. Consider
an edgee of the grid-graph. Since wires in a layer are separated by at least� ande has length�/2, at
most one VLSI-wire per layer intersectse (i.e. e is partly or fully in the area of this wire). Since there
are� VLSI-layers for wires, this shows that there are at most� VLSI-wires that intersecte. Furthermore,
since gates are separated by at least�, at most one gate fully coverse. By construction, there is at most
one output tree for each VLSI-wire and there are at most three output trees for each gate (a gate has its
own output tree and the trees of at most two inputs). Since each tree useseonly once,e is used at most
� + 3 times in the whole constructed graph.

We can bound the number of edges in a grid-graph of areaA and grid-width�/2 byO(A/�2). Since
each grid edge is used at most� + 3 times and grid edges have length 1 in our model for wire length, the
wire length of the constructed layout isO(

�
�2A). �

70 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

6. Discussion

We have introduced a new complexity measure, wire length, that provides a useful criterion for judging
whether a proposed circuit design is realistic from the point of view of a possible physical implemen-
tation in hardware or wetware. The relevance of the wire length of cortical circuits has previously been
emphasized by numerous neuroscientists, from Cajal (see for example[4, p. 14]–[6]).

In Section4, we have analyzed the wire length required for solving two concrete computational prob-
lems that are inherent in many global pattern recognition tasks. It turns out that both of these problems
can be solved by circuits whose wire length is almost linear. Furthermore, these examples demonstrate
that the design of circuits with small wire length yields circuit architectures that differ significantly from
those that arise if just the traditional circuit complexity measures (number of gates, depth) are minimized.
We expect that in general the construction of circuits with small wire length produces circuit architectures
that are less unrealistic from the point of view of physical implementation. In particular, this strategy
may help to “guess” circuit design strategies that are implemented in biological neural systems. We also
show that the new complexity measure wire length is related to the complexity measure area in abstract
VLSI-designs. However in contrast to VLSI-designs, which are necessarily much more detailed, it is
in general much easier to estimate the wire length of a circuit architecture in the model that we have
proposed in this article. Hence the new circuit complexity measure wire length may represent a useful
compromise between practical relevance and mathematical simplicity.

Acknowledgements

We would like to thank two anonymous referees for numerous helpful suggestions regarding the
presentation of the results of this article.

Appendix. Biological analysis of the model

In the cortex, neurons do not occupy the nodes of a 2-dimensional grid, but a roughly 2 mm thick
3-dimensional sheet of “gray matter”. However, since there exists a strikingly general bound on the order
of 105 for the number of neurons under any mm2 of cortical surface, the density of neurons in these
circuits remains bounded if the circuits are projected onto a 2-dimensional plane running parallel to the
cortical surface (see Fig.11). This observation provides the justification for the assumption of our abstract
model that the neurons are positioned at the nodes of a 2-dimensional grid. It also yields a biologically
realistic estimate for the length of an edge between two nodes in this grid: 10−5/2 mm. Since we are
considering just the 2-dimensional projection of a 3-dimensional neural circuit, we can estimate in this
way only the contribution of all horizontal components of all connections. However since there exist
quite good estimates for the total amount of dendritic and axonal wire under any mm2 of cortical surface
(8 km according to[10]), we know that also the horizontal component of all connections adds up to at
most 8 km. If one divides this number by the estimate 105 for the number of neurons under any mm2,
one arrives at an average wire length of 80 mm per neuron. Translated into our grid unit measure, this is
equivalent to 80× 105/2 = 25,300 grid units. The total bound of 25,300j grid units for the wire length
of cortical circuits withj neurons is likely to be an overestimate, since the preceding argument assumes

R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72 71

Fig. 11. The relationship between cortical circuitry and a simple mathematical model is illustrated by a projection onto a
2-dimensional plane.

that all of the 8 km of wires under a mm2 of cortical surface can be used for horizontal connections. In
this setup we arrive at a heuristic condition for any abstract circuit design withj neurons to be biologically
realistic: it must have an implementation in our 2-dimensional grid model with a wire length of at most
25,300j grid units.

In circuit complexity theory it is customary to express the total amount of resources used in terms of
the numbern of circuit inputs. For the sake of simplicity we denote in the formal results of this article
the number of pixels byn, and the actual number of circuit inputs is some constant multiple ofn. Several
empirical studies provide estimates for the order of magnitude of the numbern of inputs, the number
of neurons, and the length of axons and dendrites (“wires”) in biological neural circuits for sensory
processing, see[1,10,18,3]. 2

2 The number of neurons that transmit information from the retina (via the thalamus) to the cortex is estimated to be around
106 (all estimates given are for primates, and they only reflect the order of magnitude). The number of neurons in the primary
visual cortex of primates is estimated to be around 109, occupying an area of roughly 104 mm2 of cortical surface. Since the
total length of axonal and dendritic branches below 1 mm2 of cortical surface is estimated to be at most 8 km, this yields an
upper bound of 1011mm for the wire length of the primary visual cortex. Thus if one assumes for example that 100 separate
circuits are implemented in the primary visual cortex, each of them can use 107 neurons and a wire length of 109 mm. If one
writes these estimates as powers of the numbern = 106 of inputs, this amounts to 107 = n7/6 neurons and a wire length of
1011.5 < n2 grid units (in the framework of our model).
The whole cortex receives sensory input from about 108 neurons. It processes this input with about 1010 neurons and less
than 1012 mm wire length. If one assumes that 103 separate circuits process this sensory information in parallel, each of them
processing about 1/10th of the input, one arrives atn = 107 inputs for each circuit, and an average circuit can use on the order
of n neurons and a wire length of 1011.5 < n2 grid units. The actual resources available for sensory processing are likely to be
substantially smaller, since most cortical neurons and circuits are believed to have many other functions (for example related
to memory, learning and attention) besides online sensory processing. The purpose of this is to provide some concrete numbers
for the amount of resources available in cortical circuits. It is of course impossible to derive support for specific asymptotic
complexity measures from such sparse data.

72 R.A. Legenstein, W. Maass / Journal of Computer and System Sciences 70 (2005) 53–72

References

[1] M. Abeles, Corticonics: Neural Circuits of the Cerebral Cortex, Cambridge University Press, Cambridge, 1999.
[2] S. Agarwal, D. Roth, Learning a sparse representation for object detection, in: Proceedings of the Seventh European

Conference on Computer Vision,2002, pp. 113–130.
[3] V. Braitenberg, A. Schüz, Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd Edition, Springer, Berlin, 1998.
[4] S.R. Cajal, Histology of the Nervous System, vols. 1 and 2, Oxford University Press, New York, 1995.
[5] D.B. Chklovskii, Binocular disparity can explain the orientation of ocular dominance stripes in primate primary visual

area (V1), Vis. Res. 40 (13) (2000) 1765–1773.
[6] D.B. Chklovskii, A.A. Koulakov, A wire length minimization approach to ocular dominance patterns in mammalian visual

cortex, Phys. A 284 (1–4) (2000) 318–334.
[7] D.B. Chklovskii, C.F. Stevens, Wiring optimization in the brain, Advances in Neural Information Processing Systems, vol.

12, MIT Press, Cambridge, MA, 2000, pp. 103–107.
[8] L. Fei-Fei, R. Fergus, P. Perona, A Bayesian approach to unsupervised one-shot learning of object categories, Proceedings

of the Ninth International Conference on Computer Vision, vol. 2, 2003, pp. 1134–1141.
[9] C.-T. Ho, R. Agrawal, N. Megiddo, R. Srikant, Range queries in OLAP data cubes, in: Proceedings of the 1997 ACM

SIGMOD International Conference on Management of Data, Tucson, AZ, 1997, pp. 73–88.
[10] C. Koch, Biophysics of Computation, Oxford University Press, Oxford, 1999.
[11] J. Lazzaro, S. Ryckebusch, M.A. Mahowald, C.A. Mead, Winner-take-all networks ofO(n) complexity, Advances in

Neural Information Processing Systems, vol. 1, Morgan Kaufmann, San Mateo, 1989, pp. 703–711.
[12] R.A. Legenstein, W. Maass, Neural circuits for pattern recognition with small total wire length, Theoret. Comput. Sci. 287

(2002) 239–249.
[13] C.E. Leiserson, Fat-trees: universal networks for hardwareefficient supercomputing, IEEE Trans. Comput. C-34 (1985)

892–901.
[14] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley, Reading, MA, USA, 1989.
[15] C. Mead, M. Rem, Cost and performance of VLSI computing structures, IEEE J. Solid State Circuits SC-14 (1979)

455–462.
[16] G. Mitchison, Axonal trees and cortical architecture, Trends Neurosci. 15 (4) (1992) 22–26.
[17] J.E. Savage, Models of Computation: Exploring the Power of Computing, Addison-Wesley, Reading, MA, USA, 1998.
[18] G.M. Shepherd, The Synaptic Organization of the Brain, 2nd Edition, Oxford University Press, Oxford, 1998.
[19] M. Weber, M. Welling, P. Perona, Unsupervised learning of models for recognition, in: Proceedings of the Sixth European

Conference on Computer Vision,2000, pp. 101–108.

	Wire length as a circuit complexity measure62626262
	Introduction
	The computational model
	The VLSI model

	Useful design tools
	Global pattern detection in 2-dimensional maps
	Relationship between wire length and other circuit complexity measures
	Discussion
	Acknowledgements
	References

