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Abstract

Machine learning for autonomous mobile robots

is a very interesting but also very difficult

problem. In this domain you need robust, fast

and efficient learning algorithms. The

combination of machine learning and mobile

robots allows us to create machines whose

performance surpasses both explicitly

programmed robots and humans. Although

humans can learn, their sensors and actuators are

in several aspects inferior to those of robots. On

the other hand a non-learning robot can only

perform tasks where all the individual difficulties

and complexities can be anticipated by the

programmer of the robot.

In this short article we discuss both a completed

project, and a new one that has just started. The

first project produced a robot that applied

learning to improve his minigolf skills. The new

project is the creation of the first Austrian team

of autonomous robot soccer players that will

compete in the robot soccer world championship

RoboCup1.

Machine learning for real robots

If you work on machine learning for real robots

you may ask yourself why machine learning for

real robots is so much more difficult than for

other applications, such as simulated robots,

optimization or classification. There are three

main reasons for that. First, everything in the

real world is nondeterministic and noisy. You

could not rely absolutely on what the sensors of

the robot perceive or on what the actuators of

the robot may do. For that reason the learning

algorithms have to be robust against this

insufficiency of the robot. The second reason is

that most machine learning methods require

hundreds or thousands of training examples. But

a real robot cannot have the luxury of training for

weeks or months. The third reason is the limited

computing power of a mobile robot. It is not

very satisfying if a robot stops for ten minutes

in order to think about its next decision. Hence,

extremely efficient learning algorithms are

needed. All these problems have their own charm,

but they can also be very frustrating in the end.

In spite of all this, the work with machine learning

and real robots is quite rewarding. To see a robot

show a surprising accurate behavior for a certain

task, where explicit programming of such

behavior was nearly impossible, is very

satisfying.

From Robot Minigolf ...

In the earlier project with real robots we worked

on a task for an autonomous robot that requires

learning insofar as a solution of this task by a

non-learning robot is inconceivable (see [1]). On

the other hand this task is also too difficult to be

solved by a human. People can learn, but they

do not have the mechanical skills which this task

requires. The task had been posed in the form of

a student competition at the Technische

Universitaet Graz. It can be outlined as follows.

A 2x5 m white platform – surrounded by a black

wall – had been divided by a black line into a

release zone of about 1 m length and a target

zone of about 4 m length (see Figure 1). For each

instance of the task one out of a large variety of

green colored hills was placed at an arbitrary

position – but at least 40 cm away from all walls

– into the target zone. The hills were formed out

of different kinds of hardening or non-hardening

resins. These hills had a relatively rough surface

and all kinds of odd shapes (diameters 30-60

cm), but they all had a round dip on the top of

about 2 cm depth, with diameters ranging from 8

to 12 cm. The task was to accelerate and release

a red billiard ball (diameter 5 cm, weight 142 g) in

the release zone on the left part of the platform

so that it comes to rest in the dip on top of the

hill. To solve this task, the ball had to be released

with just the right speed v and angle α. For most

hill positions the set of parameters 〈v, α〉  that

solved the task was so small that even an

experienced human typically needed 40 or more

trials before the first successful shot. The number

of trials needed for a second successful shot was

not significantly smaller, indicating that in spite

of all experience a human can solve this task

essentially just by chance.

After each unsuccessful trial the robots in the

competition had to find the ball, move it back to

the release zone, and initiate the next shot. All

this – just as the trials themselves – had to be

done completely autonomously, using only on-

board sensors, computing devices and power

A Very Short Story About Autonomous

Robots
Gerald Steinbauer*, Roland Koholka#, Wolfgang Maass*

* Institut für Grundlagen der Informationsverarbeitung, Technische Universität Graz
# KNAPP Logistik Automation GmbH, Graz

1 This project is partially supported by Knapp

Automation and Logistics, Siemens AG, and

JUMPtec. Fig.1: The minigolf playfield. Fig. 2: Robot Oskar while recapturing the ball.

Thema



27Telematik 1/2002

supply. There were no interventions from the

outside allowed. The performance measure for

the competition was the total time needed by a

robot until he had succeeded three times for the

current hill and hill-position, averaged over a fair

number of different hills and hill-positions.

The winner of the competition was the robot

Oskar (see Figure 2) because of its simple and

reliable hardware/software design and its fast and

robust learning algorithm. Oskar moves via a dif-

ferential drive powered by stepping motors.

This enables Oskar to reposition himself very

precisely in the release zone using visual markers

(±1mm displacement, 0.2° angle error). This fact

is important for a meaningful interpretation of

successive failed trials, as well as for producing

repetitions of successful trials. Oskar uses two

cameras as its main sensors. One camera looks

ahead (used mainly for ball tracking), the other

camera looks orthogonally down in front of the

robot (used mainly for obstacle avoidance).

Oskar accelerates the ball by hitting it with a

hammer that can be pulled up to variable heights,

thereby allowing control over the initial speed v

of the ball. Oskar catches the ball by lowering a

flexible „lasso“. He transports the ball back into

the bay in front of the hammer with a cute body

movement initiated by his two wheels („hip

swing“). For further details about Oskar see [2],

[1], and [W1].

The learning of Oskar is implemented as follows.

Oskar uses both a longterm- and a shortterm

learning algorithm. In order to compute the initial

speed v for a new instance of the task he uses

longterm learning via a sigmoidal neural network

(MLP) with 4 hidden units. This neural network

absorbs memory from positive experiences in

the past. The inputs to the neural network are

the coordinates of the 4 corner points of a

trapezoid (see Figure 3) that approximates the

segmented video image of the hill, recorded from

the starting position. The neural network is

trained via backprop, with training examples

provided by preceding successful trials. The neu-

ral network started to make useful predictions

for an appropriate initial speed v after it was

trained with data from 60 successful trials.

The other parameter a for the first trial on a new

hill is simply computed by aiming at the center

of the upper horizontal line segment („Top“) in

the trapezoid that approximates the hill. Since

Oskar’s first trial is likely to succeed only for

very simple hills, the key point of his operation

is his capability to learn via shortterm learning

autonomously from preceding unsuccessful trials

for the same instance of the task. The shortterm

learning is inspired by the two principles of „trial

and error“ and the classical binary search. From

the mathematical point of view it is a two-di-

mensional searching problem.

First Oskar draws the trajectory of the ball for

each shot (the trajectory is extracted from camera

images recorded during the shot). Then he

classifies the trajectory by a hand-optimized,

heuristic classification algorithm into one of the

following classes:

1. ball went too much to the right

2. ball went too much to the left

3. ball reached the dip, but went through it

4. ball rolled back from the hill

5. success

6. anything not fitting into classes 1-5

This classification is used as a feedback for the

binary search, although it can be erroneous due

to insufficiencies of the image processing and

the classification algorithm. Therefore we had to

adapt the classical binary search to be robust

against erroneous feedback. This robustness is

achieved by extra mechanisms. In contrast to the

ordinary binary search, we halve the search

interval only if we see „opposite“ classification

pairs (class pair 1/2 or class pair 3/4) in successive

trials. Furthermore, in some cases the search

interval may be doubled again, enabling a recovery

after erroneous answers. Fortunately each of the

two classification pairs is relevant for just one of

the two binary searches. The classification pair

1/2 triggers the binary search for the angle a. The

classification pair 3/4 triggers the binary search

for the velocity v. In case of classification 5 and

6 neither the angle a, nor the velocity v are

changed. In the latter case we are not able to

extract a relevant feedback. In the former case

we have already found a solution. Furthermore,

if this solution is stable enough, it provides a

new training example for long term learning. This

mechanism collects positive experiences for the

robot. An exact description of the learning

algorithm can be found in [1] and [2].

This simple learning algorithm works surprisingly

fast and robust for the given task. Oskar needs

about 1 to 8 trials for various hills and positions,

while humans need about 40 trials for the same

task. Oskar’s hardware is also very robust because

of its simple design. He had been running

continuously 9 hours a day during 6 months of a

major exhibition, the Steiermaerkische Landes-

ausstellung in Graz. Currently Oskar is part of

the permanent collection of the famous Ars

Electronica Center in Linz [W2] and he is still

working every day (Sundays included).

... to Robot Soccer

After our robot Oskar had learned to play

minigolf, we got a little bored. So we got

interested in a new sport for our robot, namely

robot soccer. We decided to design and build a

team of new autonomous mobile robots, that are

able to compete in the RoboCup Middle-Size

League World Championship 2003 in Padua,

Italy. Since a wide range of knowledge is needed

to build a team of autonomous mobile robots,

many institutes of the Technische Universitaet

Graz are involved in this project. A complete list

can be found on the project’s homepage [W3].

The Robot World Cup Initiative [W4] is an

attempt to foster artificial intelligence and intel-

ligent robotics research by providing a

standardized problem that poses a tough

challenge for several scientific disciplines and

technologies. The first RoboCup competition [3]

Fig.3: A typical hill, as seen by the onboard

camera of Oskar. The trapezoid approximation

provides the inputs for the neural network.

Fig.4: Typical trajectory, classified to class 2.

Fig.5: Players of the GMD Middle Size League

Team.
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was held 1997 at the IJCAI in Nagoya. The

interest in RoboCup and the number of

participating teams increases every year. Until a

robot team is actually able to perform a soccer

game, various technologies have to be

incorporated, including multi-agent cooperation,

strategy acquisition, real-time reasoning, machine

learning, robotics, and sensor-fusion. Contrary

to other robots, which are optimized for a single

heavy-duty task, robot soccer is a task for a

team of cooperative fast-moving robots in a

dynamically changing environment. The

RoboCup is organized into several leagues. They

differ in several aspects: simulated or real robots,

the types of sensors (global or individual), and

the size of the robots. So everybody can find the

optimal platform for their research.

The games in the simulation league run on the

RoboCup soccer server [W5] which is accessible

by the public. The RoboCup soccer server

provides a standard platform for research on

multi-agent systems. The soccer server simulates

the player, the ball and the field for a 2D soccer

match. Up to 22 clients (11 for each team)

connect to the server, each client controlling a

single player. The client sends low level

commands (dash, turn or kick) to be executed

(imperfectly) by the simulated player he is

controlling. The soccer server simulates the

(imperfect) sensing of the player, sending an

abstracted interpretation to the clients. This

league has already reached a high level in intelli-

gent behavior, learning, and team play [4].

Small-size robot teams consist of up to 5 robots,

with each robot fitting into an area of 180 cm2.

The robots play on a green-carpeted table-tennis-

sized field with sloping walls. The rules permit a

camera to be fixed above the field and connected

with an off-field computer for a global vision

system. This system is used to track the players,

the opponents and the ball. During the game the

robots use wireless communication to receive

tracking information from the off-field computer,

as well as commands or strategic information.

No human intervention is allowed except for

interpretation of the referee’s whistle. The teams

in this league have developed interesting

strategies for cooperative behavior, but they are

still not at the level of the simulation league.

In the middle-size RoboCup league, teams of

four roughly 50x50x80cm sized robots compete.

The field size is currently 9m x 5m. The major

difference to the small-size league, in addition to

the size of the robots and the field, is that no

global vision of the field is allowed. Thus the

robots have to rely totally on their own sensors,

including vision. The robots are fully

autonomous, i.e., their sensors, actuators, po-

wer supply and computational power are on-

board, and no external intervention by humans is

allowed, except to insert in or remove robots

from the field. External computational power is

allowed, although most teams do not use it.

Wireless communication between the robots and/

or with the external computer is also allowed. As

in most of the other leagues, relevant objects are

distinguishable by their color: the ball is orange,

the goals are yellow and blue, the robots are black,

the walls are white, the robot markings (to

distinguish the teams) are magenta and light blue.

The middle-size league provides a serious

challenge for research disciplines such as multi-

robot cooperative teams, autonomous navigation,

sensor fusion, vision-based perception, and

mechanical design, to name only a few.

In the last year the community has decided to

remove the walls around the field for the middle-

size league, as another step towards a more

realistic soccer game. Since now the ball and also

the robots are able to leave the field, the demands

on the robots regarding ball handling, perception,

and strategy increase. This may be a realistic

chance for a new upcoming team to participate

successfully, because also the established teams

have to change their paradigms.

Currently artificial intelligence and machine

learning do not yet play in this league such an

important role as, e.g., in the simulation league.

The problems caused by perception (mainly

vision), self-localization, mechanical and

electronic design (ball handling and robot drives)

are still dominating, and make it more difficult to

implement adaptive, intelligent, and cooperative

behavior.

In view of this fact we have divided our RoboCup

project into two sections, which hopefully will

meet each other again in the end. One section is

working on a new powerful robot platform,

which should provide optimal perception and

optimal dynamics for playing soccer, because

commercial robot research platforms are still not

optimal for playing soccer. By studying games

that were played during official tournaments in

the last year, we saw that a platform which is

fast and flexible in movement is very important

for a successful dynamic soccer play, and

provides a chance to outperform the opponents.

So the main design goal for our platform is the

development of a fast omni-directional driving

unit. In the 4th Robotic Soccer World Champion-

ship in Melbourne in 2000 the Golem Team [5]

from the University of Padua showed an omni-

directional drive for their robots with three uni-

versal wheels, each driven by a separate DC

Motor, mounted at the vertexes of an equilateral

triangle. This arrangement allows the robot to

control all three degrees of freedom in the plane

(∆x, ∆y, ∆ϕ) simultaneously. In order to increase

the stability of the robot platform, especially

during a rough soccer play, we adapt this

configuration to a model with four wheels. Our

configuration of the four motors and wheels is

shown in Figure 6. The other section is working

on a simulator for the upper platform, an

adaptation of the Webots simulator [W6], which

should give us the opportunity to implement

and investigate high-level behaviors and learning

approaches even before the real platform has

reached a final stable state (only the kinematics

and sensor inputs of the robot must be known in

advance). This gives us the possibility to

simulate and study higher level behavior and

machine learning algorithms on our platform in a

sufficient realistic manner while we are still

working on the implementation of the real

platform. We hope that we can transfer higher

level strategies and learned behaviors back to the

real robot platform.

Since we are now at a very early

stage in the project, our currently

used agent architecture is quite

simple but easy to handle and to

understand (see Figure 7). It

consists of a perception module,

a behavior selector and a set of

basic behaviors or skills. The

perception module processes all

sensory inputs (mainly vision and

odometry) and provides a model

Fig.6: The prototype of our driving unit.

Fig.7: Agent architecture of our soccer robots.
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of the state of the robot and its environment

(mainly the position of all the robots and the

ball). Based on this state information the behavior

selector selects one behavior from a given set of

behaviors or skills which the robot is able to

perform. The selected behavior is executed for a

given short period of time. The set of the basic

behaviors consists of very fundamental skills the

robot can perform.

This architecture has three main advantages. First,

it is simple to understand and to implement, which

is very important in view of the early state of

the project in order to get a feeling for the poten-

tial of our platform. Second, the robots have only

to provide a small set of „primitive“ behaviors

or skills. By having the behavior selector combine

these basic behaviors a relatively complex overall

behavior could be achieved. This approach builds

on the subsumption architecture by R. Brooks

[6]. The behavior selector is currently designed

and optimized by hand. The third advantage is

that the simple basic behaviors or skills can also

be learned and autonomously optimized by the

robot, using for example reinforcement learning.

This approach is discussed in the book of P.

Stone [4] for the simulation league.

Conclusion

We have tried to show that the work with

autonomous mobile robots and machine learning

for such robots is difficult, sometimes frustrating,

but most of the time fascinating and satisfying.

With the robot Oskar we had demonstrated that

the combination of machine learning and a simp-

le robust robot platform may be able to fulfill

tasks where humans fail. This was a very

surprising experience to us. Finally, we hope that

we will be able to transfer the „spirit“ and the

success of Oskar to our new robot soccer team.
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