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We introduce recursively invariant 3-recursion theory as a new approach towards recursion
theory on an arbitrary limit ordinal 8. We follow Friedman and Sacks and call a subset of
B B-recursively enumerable if it is 3;-definable over Lg. Since Friedman-Sacks’ notion of a
B-finite set is not invariant under B-recursive permutations of 8 we turn to a different notion.
Under all possible invariant generalizations of finite there is a canonical one which we call
i-finite. We consider further in the inadmissible case those criteria for the adequacy of
generalizations of finite which have earlier been developed by Kreisel, Moschovakis and others.
We look at infinitary languages over inadmissible sets L; and the compactness theorem for
these languages, the characterization of the basic notions of B-recursion theory in terms of
model theoretic invariance, the definition of B-recursion theory via an equation calculus and
axioms for computation theories. In turns out that in all these approaches the i-finite sets are
those subsets of 3 respectively L, which behave like finite sets.

Invariant B-recursion theory contains classical recursion theory and «-recursion theory as
special cases. We start in the second half of this paper the systematic development of invariant
B-recursion theory for all limit ordinals . We study in particular i-degrees, which generalize
Turing degrees and a-degrees. Besides 0 (the degree of B-recursive sets) and 0’ (the largest
B-r.e. degree) there exist incomparable B-r.e. i-degrees for every limit ordinal 8. Similar as the
step from @ to « gave rise to the introduction of regular respectively hyperregular sets we
arrive in invariant B-recursion theory at the new notion of an i-absolute 8-r.e. set. This notion
is useful in order to describe a difference among hyperregular B-r.e. sets which occurs
exclusively in the inadmissible case. The study of i-degrees is most difficult for those 8 which
are strongly inadmissible (i.e. a1cf 8 <g*). For those strongly inadmissible 8 where B* is
regular we give two new constructions which rely heavily on the combinatorial properties of
regular cardinals (<, closed unbounded sets and the A-System lemma). We construct a B-r.e.
degree a >0 such that no degree b <a contains a simple set and we prove a splitting theorem
for simple $3-r.e. sets. We base the definition of a simple set on the general notion of a I-finite
set.

1. Introduction and foundations

B is always a limit ordinal in the following. We want to study recursion theory
on B. It is convenient to have a domain which does not contain ordinals only. The
elements of B are not even closed under pairing x, y — {x, y}. Therefore we take
as domain instead of B a slightly larger collection of sets which we can build up
mechanically on our way through B. A very natural choice for such a domain is
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L — the collection of all sets which are constructible on levels less than B. Lg is
generated by iterating 8 times the operation

u — Def(u)
where
Def(u):={x < u | x is definable over (u, € | uxu)
by some first order formula with
parameters from u}.
Define

LO - Q;
L‘y+1 = Def(L‘y)9
L,=U{L,|y<A} for limit ordinals A.

Every L, is transitive, the ordinals in L, are exactly the ordinals less than vy and
for y<& we have L,& L;. Further the function y—L, from g into Lg is 3L,
definable for every limit ordinal 8 (see Devlin [3] or [4] for details concerning the
constructible hierarchy).

Definition 1.1. A set A < is B-recursively enumerable (B-r.e.) iff A is 3,1,
(i.e. A is definable over L; by some X,;-formula which may contain elements of
L, as parameters).

The definition of a B-r.e. set and a B-recursive function is due to Friedman and
Sacks [8].

A canonical enumeration procedure is associated with every 3;-definition ¢(x)
of a B-r.e. set A:

Generate successively the levels Ly, Ly, ..., L,,...(y<p) of the constructible
hierarchy up to 8. Enumerate at every step vy those elements z into A which
satisfy L, F¢(z) and which have not already been enumerated before.

This gives an enumeration of the set A because we have for every z€ L,

LyFe(2)© 3y <B (L, F e(2)),

using the fact that ¢ is a 3;-formula.

A B-r.e. set together with the described enumeration procedure is a perfect
example for the general concept of a recursively enumerable set. This concept was
explicated e.g. by Post [34] and Sacks [39]. They describe a recursively enumera-
ble set as a generated set. The set is generated by a predetermined effective
process which puts at certain steps elements into the set. Once an element is
placed in the set, it stays there. We follow Sacks [39] and speak of a RE set if we
want to appeal to this general concept. The example shows that the concept of a
RE set does not require any strong closure conditions of the considered domain
(like e.g. admissibility).
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Definition 1.2. A partial function f:Lg — L, is called partial B-recursive iff the
graph of f is B-r.e. If f is in addition defined on all elements of Lg, then we call f
B-recursive.

A canonical way to compute a partial B-recursive function f comes together
with its definition. We fix a 3,L, definition of the graph of f. Given xe L, we
start to enumerate the graph of f step by step as described before. At every step y
we check whether some pair of the form (x, z) occurs among the enumerated
elements. If we find such a pair (x, z) we say that the computation of f(x)
converges (at step vy) with value z.

At this point the question arises which properties of subsets of Lg one should
study in B-recursion theory. The second basic concept of recursion theory is
finiteness. Therefore above all we have to find out which sets are playing the role
of finite sets in B-recursion theory. We choose here the principle of recursive
invariance as our guide.

In mathematics the study of invariant properties was first formulated as a
general program by Felix Klein (Erlanger Programm, 1872). Felix Klein suggested
to define branches of mathematics in terms of a space X (i.e. a set X) and a group
‘G of transformations acting on that space (i.e. a set of permutations of X which is
a group under the law of composition (f, g)—f © g). A property of subsets of X is
called G-invariant if for every set A < X and every f € G we have that A has this
property iff f{A] has this property. The branch of mathematics determined by X
and G is the study of G-invariant properties.

Klein’s program has penetrated large parts of modern mathematics. It was
introduced into (ordinary) recursion theory by Rogers [35]. Here X is the set of
natural numbers and G is the group of all recursive permutations of the natural
numbers. Instead of G-invariant one says recursively invariant. All important
notions of ordinary recursion theory (except subrecursive hierarchies etc.) are
recursively invariant. In fact Rogers [35] states: ‘The notion of recursive in-
variance characterizes our theory and serves as a touchstone for determining
possible usefulness of new concepts.’

It seems that Klein’s program was never explicitlty mentioned in generalized
recursion theory. Nevertheless one followed it intuitively. For example in a-
recursion theory and in recursion theory in higher types all the considered notions
are invariant under the approximate group of recursive permutations.

In B-recursion theory the definitions of a B-recursively enumerable set and of a
B-recursive function are very convincing. In fact these are the only definitions in
B-recursion theory, which are immediately justified by our intuition. Since there is
a canonical choice of X and G we can use Klein’s program as a guide for the
definition of further notions in B-recursion theory.

Definition 1.3. A property of subsets of Ly is called recursively invariant iff it is
G-invariant, where G is the group of all 8-recursive permutations of Lg.
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We want to study, which subsets of L; are playing the role of finite sets. A
‘finite’ set in B-recursion theory should be B-recursive and bounded (call a set
Mc L, bounded iff Mc L, for some v <f). Thus we consider

C:={QcPB(Ly)| Q is recursively invariant and every element of Q is
B-recursive and bounded}.

The union of any number of elements of C is again an element of C. Therefore C
has a largest element which we call I. This largest element is the most interesting
one from the mathematical point of view. More important: I is distinguished from
all the other elements of C through its coherence with the notion of a B-
recursively enumerable set. We can make this point more precise after Theorem
1.11, where we have a perspicuous characterization of I at hand. It is convenient
to prove some other fundamental facts first.

Definition 1.4. A subset of L; is called i-finite (‘invariantly finite’) iff it is an
element of I—the largest recursively invariant class of B-recursive bounded
subsets of Lg.

Sometimes we write ig-finite instead of i-finite in order to stress the dependence
upon 3. Observe that for 8 = w the i-finite sets are exactly the finite sets and for
B =« (o admissible) the i-finite sets are exactly the a-finite sets. Thus ordinary
recursion theory and a-recursion theory are special cases of recursively invariant
B-recursion theory.

Small greek letters will always denote ordinals in the following,

Definition 1.5. (a) B*:=ud<p (there is a B-recursive function which maps f
one-one into §). B* is called the 3,-projection of B.

(b) olcfB:=ud=<p (there is a B-recursive function which maps & cofinally
into B). olcf B is called the recursive cofinality of B.

(c) An ordinal y< B is called a B-cardinal iff

LgE[13 8 <y 3f (f maps y one-one into §)].

(d) B-card(x):= ud (there is some f e L, which maps x one-one into 8) for any
x € L. B-card(x) is called the B-cardinality of x.

Observe that B* and olcfB are always B-cardinals. B is admissible iff
olctfB=p. A Skolem hull argument as in the proof of the following lemma
shows that there is always a largest B-cardinal if 8 is inadmissible [9]. This implies
that B* < B for inadmissible 8. It is easy to see that B-card(x) is a well-defined
ordinal less than B for every x e L.

The following lemma is well known. Its proof is a refinement of a standard
proof of GCH in L (see [3, 4]). ‘LEGCH’ follows from the lemma as a special
case (take B =),
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Lemma 1.6 (reflection principle). Assume that p is a B-cardinal and p<p*.
Further assume that x € Ly and x < L; for some 8 <p. Then x € L,,.

Proof. Assume 8= (otherwise trivial). Let h be a 3; Skolem function for Lg
without parameters (see [4]). Define the set D as the closure of Lg,, U{x} under
the pairing function u, v — {u, v}. Define Y:=h[wXD]. Then D<c Y<5 L,z and
the transitive collapse of Y is some L, with a limit ordinal y <@ according to
Devlin [4]. Call the collapsing function r. Since x = 7(x) € L, it is enough to show
that y<<p. h| @ XD is 3, definable over L; with parameters from Ly Uix}.
(h} wx D) is in general not a function. Therefore we apply the canonical X,
uniformization procedure (see [4]) and get a one-one function f<(h| w xD)™!
with dom f=Y. Furthermore f is definable over L; (and over Y) by some 3,
formula  with parameters from Lg,; U{x}. D is transitive and therefore the same
formula ¢ defines over L, a function f which maps L, one-one into D where
f(m(u)) = w(f(u)). This implies y < B since one can map D B-recursively one-one
into & and according to our assumption we have 8 < B*. Therefore we know that
fe L, and there is an other element of Lz which maps D one-one into 8. Since p
is a B-cardinal this implies y<p.

Corollary 1.7. Assume that xe Ly and x < B*. Then there is a <p* and a
function f e L, which maps & one-one onto x.

Proof. f is the function which enumerates x in order. For admissible B it is
obvious that fe L. Otherwise we know that B* < B and we show inductively that
fl oeLg« for every o<8. For limit ordinals o we use in this induction the
preceding Lemma 1.6. [

Remark 1.8. Without the assumption p<pg* in Lemma 1.6 one comes into
difficulties in the proof of Lemma 1.6 in the case that 8 is not a limit of limit
ordinals. If one works with Jensen’s J-hierarchy one can use at this point Jensen’s
uniformization theorem (see [17]). We can avoid here all complicated machinery
because only the following two facts are needed (they are derived in the proof of
Theorem 1.11):

(a) for every i-finite set x € L, there is some f e Lz which maps x one-one onto
some y<olcfp

(b) if xeLg is not i-finite, then there is some fe Lz which maps olctp
one-one into Xx.

Lemma 1.9. Assume A <SL; is B-re. Then there is an ordinal §<p and a
B-recursive function f which maps 8 one-one onto A. We can always choose
8 <max(B*, olcf B).

Proof. According to Devlin [4] there exists a B-recursive function which maps B
onto Lg. One can apply 3,-uniformization to the inverse of this function and thus
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get a B-recursive function which maps L; one-one into 8. Therefore we can
assume that the given B-r.e. set A is a subset of B*.

Fix a 3,L; definition ¢ of A and a B-recursive cofinal continuous increasing
function q:o1cf B — B. One can define a B-recursive function h:olcf g — L,
such that h(y) is a function which maps some 8, < B* one-one onto

{x | Loty sy Fl@ () IA Lo FLo ()]}

for every y<olcfB (h(y) exists by Corollary 1.7). It is easy to define a
B-recursive function g which maps some 8<max(8* a1cfB) one-one onto
U {v}x8, | y<olctp} (use Lemma 1.6 if olcf B<B*). We get the wanted
function f by combining g and h. [

Corollary 1.10. There exists a -recursive function which maps max(B*, o1 cf 8)
one-one onto PB(see [9]) and there exists a B-recursive function which maps B8
one-one onto Lg.

Proof. By Lemma 1.9 there exists a B-recursive function which maps some
8§ <max(B*, o1 cf B) one-one onto B (take A:= B in the lemma). By definition of
B* and o1 cf B we have 8§ =B* and 6 = o 1 cf 8. Therefore 6 =max(B*, ol cf B).

For the second part of the corollary we take A:=Lg; in Lemma 1.9. As before
we get a B-recursive function which maps max(8*, o1 cf B) one-one onto L. We
combine this function with the preceding one in order to get a B-recursive
function which maps 8 one-one onto L;. [

Theorem 1.11. The set I of i-finite subsets of L is a B-recursive subset of Lg. One
has for every xe Lg:

X is i-finite s B-card(x) <ol cf B
©3Ifel; A8 <ol cfB (f maps x one-one onto 8).

Proof. Take an i-finite set x. Since x is B-r.e. there exists by Lemma 1.9 an
ordinal 8 =<8 and a B-recursive function f which maps 8 one-one onto x.

Assume for a contradiction that § = a1 cf 8. Define then X:=f[o1cf B]. Fix a
B-recursive cofinal increasing function q: o1 cf 8 — B such that X Ng[o1cf B]=9.
Define a B-recursive permutation h of L; as follows:

q(f Hz)) it zefk,
hz):=<f(q"'(2)) if zeqlolcfB],
z otherwise.
X is B-recursive (since x is B-recursive) and glo1 cf B8] is B-recursive (since q is
increasing and cofinal). Thus h is B-recursive. h(x) is unbounded and therefore

not an element of I. This is a contradiction to the recursive invariance of I.
Since 8§ <olcf B it is clear that fe Lg.
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Further one verifies easily that {xe Lg|B-card(x)<olcf B} is recursively
invariant. Thus it is a subset of I by the definition of I. This finishes the proof of
the claimed equalities.

The set {xeLg|B-card(x)<olcfB} is obviously B-r.e. The set S:={xe
Lg|3fe Ly (f maps o1 cf B one-one into x)} is as well B-r.e. Therefore we know
that I is B-recursive as soon as we have shown that S=Lg;—L

We have Scl;—1 since olcf B is a B-cardinal. In order to show Lz —I< S
we take some x € Ly — 1. We can assume without loss of generality that x is subset
of a B-cardinal p because there is some ge Lz which maps x one-one into
B-card(x). Let f:o1lcf B — x be the B-recursive function which enumerates the
first o1 cf B elements of x in order. We want to show that fe Ls. For olcf=w
this is immediate since f [+ is finite and therefore an element of L, for every
v<oalcfB. For ol cf 8> w we know that 8 is a limit of limit ordinals. Therefore
we can drop the assumption p<g* in Lemma 1.6. (Prove Lemma 1.6 as follows
for these B: Take some limit ordinal A such that Ls,, U{x}<L,. Consider the
Skolem hull in L,, not in Lg.) Thus we get that fl ye L, for every y<olcfB.
This implies that we can define f over some L, with c<B. [

We can now explain the announced coherence between the notion of i-
finiteness and the notion of a B-recursively enumerable set. In recursion theory
one usually considers the ‘universe’ as a potential infinity which is in a certain
sense the limit of the finite world below. Likewise one expects, that a RE set can
be approximated from below by taking into consideration a larger and larger
‘finite’ number of steps in the associated enumeration procedure. For generalized
recursive functions one can formulate this equivalently as the requirement, that
every converging computation comes to an end after performing a ‘finite’ number
of steps in the computation procedure.

It turns out that the way of counting steps in the earlier described enumeration
procedure was a bit awkward. Consider therefore the following more economical
way of generating L, which does not contain so many superfluous substeps. Fix
some B-recursive cofinal strictly increasing function q:olcf B — 8. We can
assume without loss of generality, that there is a 3,L, formula ¢ with the
property that for every y<<olcfB q(y) is the minimal ordinal o such that
L,Fo(y). Then generate Lg in ol cf B many steps as follows. Start to build the
constructible hierarchy until one reaches a level 8 such that L;F¢(0). Call this
ordinal §,. Continue to build the L-hierarchy until one comes to the first ordinal 8
such that LgFe(1). Call this ordinal &,. Etc. In this way we construct the
increasing sequence of sets (L, |y<olcfB). Since 8,=q(y) for every y<
olcf B we have that L; is the union of these sets.

The described way of generating L, induces a ‘quick’ enumeration procedure
for any B-r.e. set A with X L, definition ¢: Generate successively the sets
Loy - -+ » Loy - - - (y<<olct B). Enumerate at every step vy those z into A which
satisfy L, F¢(z) and which have not already been enumerated before.
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There is a certain arbitrariness concerning counting steps. But there is always a
most economical way of counting steps such that the associated Kleene T-
predicate “z is enumerated at step y of the enumeration procedure e” is still
B-recursive. In this sense o1 cf 8 is the minimal number of steps which is needed
for the enumeration of an arbitrary B-r.e. set. The .ordinal 8 does not have a
similar significance concerning the counting of steps. One can always divide ane
mechanical step into many mechanical substeps.

According to Theorem 1.11 every ordinal vy <ol cf 8 is an i-finite set. Further-
more [ is the only recursively invariant class of B-recursive bounded subsets of Lg
which contains all these ordinals. Thus we see that I is the only class of
B-recursive bounded subsets of L;, which is recursively invariant and consistent
with the notion of a B-r.e. set.

We show in the following chapters that many other independent approaches to
‘finite’ lead to the same result. We can see immediately the equivalence of one
approach that comes from the theory of admissible sets. L, satisfies all axioms for
an admissible set except possibly Ag-collection (we take the axiom system KP as
in the book of Barwise [1]). A,-collection requires that for every a € L and every
A, formula ¢ in which b does not occur free

LsEVxeaTye(x,y)—=3IbVxecadyecbolx,y).

It is tempting to call in this situation those elements a of our domain ‘finite’ which
satisfy the collection axiom for all A, formulae ¢ (or equivalently for all 3,
formulae ¢).

It is not selfevident that the collection of these ‘finite’ sets is ‘recursive’ since
the definition involves several unbounded quantifiers. But it follows from the
arguments in the proof of Theorem 1.11 that these ‘finite’ sets coincide with the
i-finite sets for every Lg.

2. The admissible collapse with urelements
First we derive some basic properties of the i-finite sets.

Theorem 2.1. (a) If K is i-finite and f is a partial B-recursive function with
K cdom f, then f[K] is i-finite.

(b) Every B-recursive subset of an i-finite set is i-finite.

(c) If K is i-finite and f: K — L, is a B-recursive function with f(x) i-finite for
every xe K, then | {f(x)| xe K} is as well i-finite.

(d) Assume that an i-finite set K is subset of a B-re. set W. If f is any
B-recursive enumeration of W (i.e. f:o1cf B— L is a B-recursive function such
that f(y)<f(8) for y<8 and W= \J range{), then there is some step of the
enumeration where all elements of K have been enumerated (i.e. Ay<olcfp

(K< f(v)).
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In fact a B-r.e. set is i-finite if and only if it has this property.
(e) A set K< L is i-finite if and only if for every partial B-recursive function g
there is a partial B-recursive function h such that for all x € L,

1 ifVyeK(glx y)=1),
0 if3yeK(glx,y)=0).

Proof. (a) Take g L; which maps some § <ol cf 8 one-one onto K and use the
definition of o1 cf 8 (and Theorem 1.11).

{(b) Show first that the B-recursive subset is an element of L; and then apply
Theorem 1.11.

(d) It is obvious that every i-finite set K has this property. For the converse
assume that K is any B-r.e. set with this property. Consider a PB-recursive
enumeration f of K. We get then K = f(v) forsome y <ol cf 8. Thus K € L andif K
would not be i-finite we could use a one-one map ge Lz from olcfg into K in
order to construct an enumeration of K which does not stop before o1 cf 8.

(e) Define for an i-finite set K

hix)=i:30<BL,E[VyeK (glx, y)=1)Ai=1)
v@yeK (glx,y)=0)Ai=0)].

h(x)Z{

Then h is partial B-recursive for every partial B-recursive g. On the other hand if
KcLg is any set with the property in (e) we get immediately that K is
B-recursive: consider for this

1 if x#y,

gl y)= {0 if x=y.

Then choose a B-recursive function f which maps some 6 =<g one-one onto K
(Lemma 1.9). Assume that § = a1 cf 8 (otherwise the proof is finished). Fix some
3,Lg formula ¢(x) such that {xe Lg | LgF(x)} is not I, L,. Let q:olcfB— 8
be B-recursive and cofinal. Define g(x, y) as follows for ye K:

1 if fYy)=olctBv(f(y)<olcdBAa
glx, y)= | iy F (X)),
0 if fUy)<olcf BAL,ryyF(x).

g is partial B-recursive and the associated B-recursive function h is the charac-
teristic function of {x € L, | Lz Fy(x)}. This contradiction shows that 8 <o 1 cf B.

(c) One can sce easily that 8-r.e. set |J {f(x)| x € K} is i-finite according to the
criterion in (d). [

We write in the following U for the set Ly —1. U will be the collection of
urelements in the admissible set Ug.

We assume that the reader is familiar with the syntactical framework for the
discussion of sets with urelements as it is presented e.g. in the book of Barwise [1]
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(starting on p. 9). The structure of the urelements is described in L, a first order
language with equality. In our case L contains no constant symbol except
equality. The structures for L will be of the form (U, = | UXU). We write
instead simply U because the equality symbol is always interpreted as the usual
equality relation in the following. Sets with urelements are discussed in an
extended language L*. In our case L* is a single sorted first order language like L
with three additional predicate symbols for I, € and T.
We consider in the following the structure

Wg:=(U; L T)

for the language L*. I is here again the collection of i-finite sets in Lg and
€:=€l Ly X I T is the canonical B-recursive truth predicate for A¢Ls formulas in
L, (see e.g. Devlin [4, Lemma 8.4]).

As in the book of Barwise we use the letters x, y, z for variables in L*. They
arc interpreted as ranging over UUI=L,.

Lemma 2.2. The set {(x,,...,x,)e L} | AsFp(xy, ..., x,)} is B-recursive for every
Ao formula @(xy, . .., x,) with parameters from L.

Proof. Induction on the length of ¢.
(a) ¢ is an atomic formula.
We use here that the predicates I, €, T are B-recursive.
(b)

‘P(xl’ AR xn)EV xéxl ll,(xy Xisenns xn)’
M::{(xa X150 e ’xn)eLg+l I %{Bt:l//(x5 X1s ey xn)}

is B-recursive by the induction hypothesis. We have for any (x,,...,x,)e Lj:
Ug Folxy, ..., x)xe Uv(x;eIAY xex, ((x, x4, ..., x,) € M)).

This shows immediately that {(x,, ..., x,) | g Fe(xy, ..., x,)} is II, Ls. In order to
show that it is 3,L; we observe that

x;elAY xex, ((x,xy,...,x,)eM)S
xi€InFo<B(x,eL AL, FY xex, y(x, xq, ..., %))
where ¢ is a XL definition of M.
(c) The other cases are analogous respectively trivial. [
Theorem 2.3. U, is an admissible set with urelements. We have for every set
Mcl,:
M3, L, oM3, U, and MA, LyoSMA, Y,

Proof. We show first that ¥, satisfies all axioms of KPU, the theory of admissible
sets with urelements (see [1]).
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For any K, He I we have in 2, that
Vx(xéeK<>xeH)—>K=H

since Lg is transitive (extensionality).

The axiom of foundation is reduced to the corresponding axiom in the universe.
The pairing axiom is trivial.

For the union axiom we consider a set K€ I. In order to prove that there is
some H €I such that VyéK Vxéy (xé H) we observe that the function f: K — Lg,

x if xel,
@ otherwise

=1

is B-recursive. Therefore H:= | {f(x)|x € K} is i-finite according to Theorem
2.1(c).

The A, separation axiom requires that for any KeI and any Ay, formula
@(x) the set {xe K|AgFep(x)} is again i-finite. By Lemma 2.2 the set {xe
Lg | g F o(x)} is B-recursive. Therefore the claim follows from Theorem 2.1(b).

Finally we prove the A, collection axiom. Let ¢ be a Ay, formula and K an
i-finite set such that for all x € K there is some y € L with Uz Fe(x, y). We have
to find an i-finite set H which contains such an y for every xeK.
M:={(x, y)e L3 | Az F ¢(x, y)} is B-recursive. We apply X, uniformization in L, to
M and get a partial B-recursive function f&c M with K<dom f. H:=f[K] is
i-finite by Theorem 2.1(a).

Thus A, is a model of KPU. For the rest we consider a Ao,Lg formula ¢(x, y).
We show that M:={xe Lg | LgF3y ¢(x, y)} is 3,U, definable. It is obvious that

xeM&IAyelgAzely (2= "0l y)' AT(2)).

The latter can easily be written as a X, formula.
On the other hand it follows immediately from Lemma 2.2 that every 3,2,
definable set is 3,L; definable. [

3. Infinitary languages

The notion finite is essential for ordinary logic and its model theory. A standard
example is the compactness theorem: If T is a set of finite sentences such that
every finite set To= T has a model, then T has a model.

Consider the set Lg for some limit ordinal 8. We want to find out for which
notion of ‘finite’ in L, the compactness theorem holds. Let L = Lz be a language
as defined in Barwise [1]: L is a set of variables and symbols for relations,
functions and constants together with a function which tells us the ‘arity’ of
relation and function symbols. We assume always that L is 8-recursive.

Li; € L., is defined as the set of infinitary formulas in the language L which
contain conjunctions and disjunctions of i-finite sets of formulas only. L,z can be
considered as a subset of L.
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Theorem 3.1. Assume that B is a countable limit ordinal. Let T be a %,L; set of
sentences of Lig. If every i-finite set To< T has a model, then T has a model.

Proof. We apply the Barwise compactness theorem to the admissible collapse
with urelements U, as defined in Section 2. Ls is the admissible fragment of L.,
given by %, in the sense of Barwise [1]. By Theorem 2.3 L is A%, since L is
A,Lg and T is 3,9, since T is 3, L,. Further the sets in U, are exactly the i-finite
sets in L. O

As an application of Theorem 3.1 one can show that a subset of a countable L,
is i-finite iff it is absolutely implicitly invariantly definable over L (see Section 5).

Theorem 3.2. Assume that B is not admissible. Then the compactness theorem does
not hold for any notion of ‘finite’ in Lg which satisfies

(a) every finite subset of Ly is ‘finite’ and

(b) every element of Ly of B-cardinality ol cf B is ‘finite’ and

(c) every ‘finite’ set x is bounded (i.e. x = L, for some v<<p).

Proof. Assume that ‘finite’ satisfies (a), (b) and (c¢). Fix some B-recursive strictly
increasing cofinal function q:o1cf 8 — B8 such that g(0)> o1 cf B. We consider a
language L < L; which contains contant symbols y:=(1, v) and q,: =1, q(v)) for
vyeolcf B. Further L contains an additional constant symbol ¢, a one place
function symbol f and a two place relation symbol=. L is A,L,. Define a set of
sentences in the language L as follows.

T:={Vx(\/ x=yvV x=f('y)>}u

yeaolcfB yeolctB

{fy)=q,|yeolctBiU{nc=v|vealctB}U
fe=q,|veolcf BlU{Vxyz(x=yAy=2)— x=2)}.

Every formula in T is a ‘finite’ element of Lg by (a) and (b). Further T is AL,
and every bounded T, < T has a model. T has no model since every interpretation
of ¢ is contradictory. [

4. An equation calculus and relative recursiveness

Kleene’s equation calculus is one of various formal characterizations of the
recursive functions in ordinary recursion theory (see e.g. [35, §1.5]). According to
Kripke [21] a similar equation calculus can be used in order to define the
a-recursive functions for admissible ordinals a. Kripke adds a rule which allows
to survey in a computation «-finitely many bits of information so far produced.
This rule happens to be superfluous in presence of the other rules in the special
case a =w. Besides the approaches to a-recursion theory via definability and
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model theoretic invariance Kripke’s equation calculus offers a way to introduce
a-recursive functions via computations. One usually concentrates on this ap-
proach because computations are considered as the heart of the matter and
because it is a good way to motivate the definition of relative recursiveness in
a-recursion theory. Kripke’s approach is discussed extensively in the early papers
on metarecursion and a-recursion theory (see e.g. Kreisel and Sacks [20] or Sacks
[37], a sketch is given in Shore [41]).

The following variation of the equation calculus works for every limit ordinal 8.
We keep Kripke’s rule which allows to quantify over i-finite sets. We add some
trivial initial functions. These initial functions are computable by the help of the
other rules in the special case where B is admissible. It is convenient to write the
equation calculus in such a way that any element of L; may occur as argument or
value of a function, not just ordinals. Since we are mainly interested in relative
recursiveness we consider everything relative to a fixed set B< L.

A computation has the form as shown in Fig. 1.

Endequation

-—— i - finite branching

—  Axioms of the form xe B,
x¢B,F(x,y)=z where F
is some rudimentary function

Fig. 1.

The initial functions in the equation calculus are some rudimentary functions.
Jensen introduced in [17] the notion of a rudimentary function and showed that
every rudimentary function can be written as the composition of nine rudimen-

tary functions F, ..., Fg. Rudimentary functions are maps from the universe of
sets into the universe of sets. F, ..., Fs are defined as follows:

FO(x> Y) = {x, y})

Fi(x,y):=x—y,

F(x,y):=x Xy,

Fi(x, v):={u, z, v) | ze x A{u, v) €y},
Fix,v):={u, v, z)| zex A{u, v) €y},
Fs(x, y):=U x,

Fg(x, y):=dom x,

Fo(x,y):=eNx?,

Fy(x, y):={{u|(z, uyex}| ze y}.
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Lg is closed under all rudimentary functions. We use the restrictions of the F;
to Lg as initial functions in the equation calculus.

Observe that the rudimentary functions are a common background of -
recursion theory and Normann’s set recursion [33] which generalizes recursion in
objects of higher types.

The primitive symbols of the equation calculus are: function letters f, g, h, .. .;
variables x,y,z,...; set constants x for every xelg; function constants
F,, ..., F; (for the initial functions) and cg (for the characteristic function of the
given set B); a bounded existential quantifier (3 x € 1) and the equality symbol =.

Variables and set constants are terms. Further if f is a n-place function letter or
function constant and ¢,,...,t, t are terms, then f(t;,...,t,) and @xet)t; are
as well terms.

If t+, and t, are terms, then t, =t, is an equation.

The intended meaning of the equation (R x e y) t(x) =0 is: y is i-finite and there
is some x €y such that t(x)=0. @ xecy) t(x)=1 means: y is i-finite and t(x)=1

for all xey.
The axioms of the equation calculus are the equations F;(x, y)=z for x,y,z €
Lg such that F(x,y)=2z i=0,...,8 and the equations

cs(x)=0 for xeB,
cg(x)=1 for xeLz—B.

There are four computation rules:

(R1) substitute a set constant for a variable throughout an equation;

(R2) if we have computed equations t; =t and t=x where t contains no
variables but is not just a set constant, then we may substitute one occurrence of t
in t; =1, by x (we call the equation t, =t, the major premise of this rule);

(R3) t(x)=0 for some x €y where y is i-finite F@xey) t(x)=0;

(R4) t(x)=1 for every x ey where y is i-finite F@xey) t(x)=1.

For a set E of equations define the set % of all equations computable from E
(and the characteristic function of B) as usual:

SEB contains just the axioms and the equations in E. For §>0 Sg° is the
set of all equations which can be computed by (R1),...,(R4) from premises in
Us<s S5P. 858 :=Uscon S5

Further define SE-¥ < §%” as the set of all equations which can be computed by
an i-finite computation. In order to be able to say that a computation is i-finite
assume that some coding of equations by elements of L, is fixed. Consider a
computation as a wellfounded tree where the position of every node is denoted by
a finite sequence of ordinals less than . The empty sequence is attached to the
equation at the end of the computation.

Theorem 4.1. (a) g is partial B-recursive if and only if there is a finite set E of
equations such that for all x,y € Lg

g(x)~yogx)=yeSHeg(x)=ye S
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(b) Assume B < L and g is a partial function Ly — Lg. Then there is a finite set
E of equations such that for all x, y € Lg

g)=yeglx)=yeSH®
if and only if there is a B-r.e. set W such that for all x,ye L,
g(x)=y&Ai-finite K, H((x, y, K, HHe WAK<BAH< L; —B).
Proof. We prove at first (b). Assume E is a finite set of equations and f is a
function letter such that for all x,yel,
gx)=yoflx)=yeSH".

The restriction of a rudimentary function to L; is B-recursive (Jensen [17,
Corollary 1.4(b)]). Therefore the following set is B-r.e.:

W:={x,y,K,H)|3zeL; (z is an i-finite computation of f(x) =y from
equations in E and axioms where

K ={u | the axiom cg(u)=0 is used in the computation z}

and
H={u|the axiom cgz(u)=1 is used in the computation z})}.

For every i-finite computation z the associated sets K and H are i-finite.
In order to prove the other direction of (b) we assume that the partial function
g is defined by

g(x)=y o3 ifinite K, H ((x,y, K, HHe WAK<BAH<c L; —B)

where (x, y, K, Hye We LgF3z ¢(x, y, z, K, H) for some 4, formula ¢.
Assume first that g has the additional property g(x) § =>g(x)#@.
Define auxiliary functions hy, h,, hs as follows:

h(xuz,0,w)=U{ylyeunLgkolxy, z, v, w,
0 ifPex,
ha(x) :{ <

1 otherwise,

1 if x#0,
hs(x) = { i

0 otherwise.

These functions are rudimentary according to Jensen [8].

We define a set E of six equations with function letters hy, ..., hs, f. The first
three equations are of the form h;(x)=--- with a suitable composition of the
F,, ..., F; on the right side, i=1,2,3.

(4) ha(x) = hy(es (x)),

(5) hs(ls 1,1, Y) =Y

(6) f(x)= hs(hs(hy(x, u, z, v, W), hs(@y € v) ha(y)),
h’3((3 Y € W) cB (Y)), hl(x7 u, z, 0, W))
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We show that for every x, y elg
g(x)=y&f(x)=yeSFP

For ‘=’ we take ze€ L, and i-finite K, He L, such that LsFo(x,y, z, K, H).
Then we have hy(x,{y}, z, K, H) =y e S&®. Further

QveK) hy(v)=1€SP® and QveH)cg(v)=1eSF®.
Together this imples
f(x) = hs(hs(y), hs(1), h3(D), y) € S

By the additional assumption about g we have y#{ and therefore f(x)=
hs(1,1,1, y)e S5, By using (5) we get from this f(x)=ye SEB.

In order to show the other direction we assume that f(x)=ye SF®. We can
trace back the computation of this equation and get a finite sequence of equations
Gy, ..., G, where G, is the endequation f(x)=y and G, is an axiom or an
equation out of E. In this case it is necessarily eq. (6). For all i<n G, is
computed from G;,, by an application of rule (R1) or (R2). In the case of rule
(R2) G, is the major premise. Every G; has necessarily the form f(t,)=+t,. In
course of the computation from G, to G, all the auxiliary function letters and
bounded quantifiers are eleminated by applications of rule (R2). Since the minor
premise of these applications has the form t =z with a closed term t beginning
with a bounded quantifier or a function letter we can trace back the computation
of the minor premise in an analogous way. From this analysis of the computation
one can see by a simple but lengthy combinatorial argument that only ‘desired’
equations can occur in the computation. This is shown first for the function
constants F, ..., Fg, cg, then for the function letters hy, h,, h;, then for the
function letters hy, hs and the terms with bounded quantifiers and finally for the
principal function letter f.

It remains to be shown that we can get rid of the additional assumption
g(x)| = g(x)#§. If g is any partial function which is defined with the help of
some B-r.e. set W as above we can define the function g with

5y {{g(x)} if (),

) otherwise

analogously. § satisfies the additional assumption and is by the preceding there-
fore computable as desired. Since the function x— | J x is rudimentary this holds
then as well for the function g itself. This finishes the proof of (b).

(a) is a special case of (b) where B =. For any finite set E of equations one
has SE?=8E% [

We define now the notions of relative recursiveness for invariant 8-recursion
theory which will be studied in the rest of this paper. Analogously as in other
parts of generalized recursion theory there are two possibilities. In order to
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compute a function g from an oracle B one can either allow any computations of
equations g(x) =y which proceed according to the rules of the equation calculus
(i.e. g(x)=ye S¥P) or one can demand in addition that every computation tree is
an element of a previously specified reservoir which does not depend on the
oracle B (e.g. g(x) = ye SF®). In the second case one can define the reducibility as
well without reference to the equation calculus according to the previous theorem.

Definition 4.2. Assume A, B < L.

(a) A is computable from B (A <.B):&there is a finite set E of equations and
a function letter g such that for all xe Ly xo(x)=j & gx)=je S™” (xa is the
characteristic function of A).

(b) A is weakly i-recursive in B (A <, B):Sthere is a B-r.e. set W such that
for all xeLg

xa (x) = je3i-finite H,, H, (x, j, H;, H,)e WAH, < BAH,< L; —B).

(c) A is i-recursive in B (A =;B):&there is a B-r.e. set W such that for all
i-finite K

K c A &3i-finite H;, H, (K, 0, H,, H,)e WAH, <« BAH,<L; —B)
and
KclL;—-A&Jifinite Hy, H, (K, 1, Hy, Hy)e W
AH,cBAH,cL;—B).

At the first glance <,,; scems to be the most interesting reducibility for someone
who wants to admit only computations out of a fixed reservoir. But already for
admissible B8 this reducibility is not transitive [5]. Nevertheless =,,; remains of
technical interest. In order to get a transitive reducibility one consideres instead
=,

For B = w all three reducibilies are the same as Turing reducibility. For 8 =«
(o admissible) =<, coincides with <_,, <,; with =,, and <; with <.

In wa-recursion theory Kreisel has favored the first reducibility =<.. It has for
countable a a nice model theoretic interpretation which we will extend in Section
5 to all countable 8. The choice of computation rules is always to some extent
arbitrary. Therefore it is satisfying to find a model theoretic interpretation which
allows to state that the computation rules are in a certain sense complete.
Technical interest in =<, comes from the fact that the solution of Post’s problem
for =<_requires extra work compared with the solution for =,

Of particular interest are those oracles B for which both reducibilities coincide
because everything which is computable from B is already computable from B
with an i-finite computation. This leads to the following definition.

Definition 4.3. B < L, is i-absolute if for every finite set E of equations SEB =
SPB.



44 W. Maass

We show in Section 7 that nontrivial i-absolute B-r.e. sets exist for every $. The
following lemma indicates how a set can be made i-absolute in a priority
construction.

Lemma 4.4. Bc L, is i-absolute iff for every relation R< Lg X Lg with dom R
i-finite and (x, y)e R &3 i-finite K, H ((x, y, K, HHe WAK<BAH < Lg —B) for
some B-r.e. W there is an i-finite function h = R with dom h =dom R.

Proof. Assume B is i-absolute and consider some R < Lz X L as in the claim. It
is obvious from Theorem 4.1(b) that there is a finite set FE, of equations and a
function letter f; such that for the function g:= R x{1} we have g(x,y)=z &
filx,y)=2z€SFB. Let f be a new function symbol and define E:=E;U
{f(x)=fi{x, y)}. We write K for the i-finite domain of R. For every x € K there is
some y such that (x, y)e R and therefore f,(x, y)=1¢€ SF+® < §¥B, Thus by (R4)
@xeK) f(x)=1eS%B, At this point we use the i-absoluteness of B and get
3xeK) f(x)=1eSF".

We analyze now this i-finite computation and show that one can read off from it
an i-finite uniformization function h < R with dom h =dom R. We go backwards
in the i-finite computation of (3 x € K) f(x) =1 in the same way as in the proof of
Theorem 4.1. Since E contains no equation of the form (3xet)f(x)=s the
bounded quantifier (3 x € K) came in through an application of (R3) or (R4).
Since we have the term 1 on the right side of the end equation this was actually an
application of (R4). The premises of this application were the equations f(z)=1
for ze K.

We study now the computation of f(z)=1¢e SF® for some ze K. f(z)=1 can
only be derived from f(x) = fi(x, y) € E by (R2). The function letter f; can only be
eliminated if it has constant arguments. Therefore the variables x and y in
f(x)=f1(x, y) are first substituted by set constants z and v. The minor premise of
the application of (R2) where f, is eliminated is then the equation f,(z, v)=1.
Because of the structure of E, we have for this v f,(z, v) =1 SF+® and therefore
(z, v)e R by the choice of f;, E;.

Thus from the i-finite computation of (3 x € K) f(x) =1 we can assign to every
z € K the v as above with (z, v)e R by an i-finite function h.

For the other direction one shows inductively that every equation in S%# is
already in S™%. O

Corollary 4.5. Assume B is i-absolute. Then we have for all sets A< Ly
A<,BoA<B&SA<,B.

Proof. One shows A <, B> A <;B by using the characterization of i-absolute in
the preceding lemma.

A<_B>A=<;B follows from the definition of i-absolute. The rest is
trivial. [
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Remark 4.6. i-absoluteness is a property of i-degrees, not just of single sets. If B
is i-absolute and A <;B, then A is as well i-absolute (this follows immediately
from Lemma 4.4).

In a-recursion theory a similar notion was introduced by Kreisel. He called a
set B < Ly subgeneric if S®2=J,.,14s S5 " for every finite set E of equations,
see Sacks [36]. There are some problems with this notion because it seems to have
no equivalent definition without reference to the equation calculus (in analogy of
Lemma 4.4). Thus e.g. if one wants to prove that B subgeneric together with
A <;B implies that A is subgeneric one is drawn into painful combinatorial
considerations.

Because of these problems one considers in «-recursion theory instead the
notion of hyperregularity. This notion plays a key role in recent developments of
the theory (see e.g. [30] and [31]).

A set Bc L, is called hyperregular if for every function f such that dom f is
i-finite and

f(x)=vy & 3Ji-finite H,, H, ((x,y, H, H))e WAH,=<BAH,cL;—B)

for some B-r.e. W there is some 8§ < with Rgf< L.
It is obvious that if B is hyperregular and A <;B, then A is hyperregular as
well.

Lemma 4.7. For every B and every B < Lz we have B i-absolute = B subgeneric =
B hyperregular.

Proof. The first implication is obvious. For the second implication assume that B
is not hyperregular and construct from the corresponding witness function a
system of equations E such that some equation in SE2—J, _gqqpST"
exists. [J

We show now that in a-recursion theory all these notions coincide for those
sets which one usually studies.

Lemma 4.8. Assume (8 is admissible and B<Lg is B-re. or regular (ie.
V8 <B(BNLseLy)). Then B i-absolute< B subgeneric & B hyperregular.

Proof. Assume B is hyperregular. For B B-r.e. and $ admissible this implies that
B is regular. Thus we can assume that B is in addition regular. We show that the
criterion for i-absolute in LLemma 4.4 is satisfied. Assume W is f-r.e. and
RcLgXLg is a relation with dom R i-finite and

(x, y)e Re3i-finite K, H ((x,y, K, Hye WAK<BAH<Lg;—B).

Since B is regular and every initial segment of B is i-finite for admissible 8 we can
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define a function F< R with dom F=dom R and
F(x)=~y&3i-finite K, H (x, y, K, Hy e WAK<BAHC< L, ~ B)

for some B-r.e. W. Since B is hyperregular and regular this function F is in fact
i-finite. [

We think that the study of i-absolute and hyperregular 8-r.e. i-degrees is one of
the most promising projects in invariant B-recursion theory. These two concepts
do not coincide as the following example shows.

We define B:=8,+¥; in L. Then olcf =8, and B*=N,. Fix some B-
recursive function P which maps L, one-one onto 8*. Then the following 8-r.e.
set B is hyperregular but not i-absolute: B:={8 <¥, | there is some ¢ and some
new such that o<¥,<8<N,,, and P '(o) is a function h:w— ¥, with
Ym(R,, <=h(m)<N,.,) and 8 <h(n)}.

B is hyperregular because 8 has cofinality ¥, in L (under V=L B is in addition
subgeneric). In order to see that B is not i-absolute consider the following relation

RcwXxXLg:{n,y)eRioOncwnl, <y<N, 4 Ay¢B.

Obviously R can be defined in the required form and dom R = w. Assume h < R
is i-finite and dom h = w. Consider o:= P(h) and n € w such tfihat ¢ <¥,. Then
h(n)e B by the definition of B and h(n)¢ B because h < R, a contradiction.

It is quite natural that i-absoluteness and subgenericity (respecively hyperregu-
larity) are not the same, although the assumption of admissibility obscures the
difference. The former requires that everything can be computed from B with an
i-finite computation, the latter requires only that everything can be computed
from B with i-finite height.

5. Model theoretic invariance and infinitary logic

A sceptical mathematician might object that infinite computations are of no
interest since the characteric feature of a computation is its finiteness. Further
doubts may arisc if one steps out into the universe of sets (Mostowski asked —
perhaps rhetorically — “What is recursive in the operation of forming the union
of sets?” (see [2, p. 14]). Of course a computation may behave —as we have
learned —in its essential features like a finite object, although it is actually
infinite. But what one considers as the essential features of finiteness may depend
e.g. on the respective mathematical background. Therefore it is satisfactory that
one can characterize large parts of generalized recursion theory beyond all these
troublesome arguments in terms of absoluteness — or ‘model theoretic invariance’
as this effect was called by Kreisel [19].

Godel [13] considers those sets M < w which are invariantly definable in first
order arithmetic A,. This means that some formula ¢ in the language of A, exists



Recursively invariant B-recursion theory 47

such that in order to find out whether some natural number n belong to M or not
we may take any model U of A, and see whether AF @(n) holds or not — the
answer will not depend on U. Of course one can express this as well proof
theoretically:

M={ncw|Aten)} and o—-M={ncw| A, Fepn)}.

The sets M which are invariantly definable in this sense are exactly the recursive
sets.

Kreisel noticed that one can characterize the other basic notions of recursion
theory in a similar way: the recursively enumerable sets are the semi invariantly
definable sets and the finite sets are the absolutely invariantly definable sets (see
the generalizations in Definition 5.1). Further he suggested to consider as well
invariant definability with respect to larger classes of definitions, e.g. implicit
definitions which may contain an existential quantifier ranging over subsets of the
model. In the unrelativized case both explict and implicit definitions lead to the
same class of invariantly definable sets. Relative to a fixed set B < L in general
only implict definitions lead to a characterization of ‘computable from B’. Kunen
[22] gave a definition of ‘implicitly invariantly definable’ which works for count-
able admissible sets. He did not include the case where an additional predicate B
may destroy admissibility (i.e. B is non-hyperregular). But it is well known that
for countable admissible « ‘implicitly invariantly definable from B over L,’ is
equivalent to ‘a-computable from B’ (in particular stressed by Kreisel). A proof
seems not to be available. We sketch a proof of the related Theorem 5.4 in order
to make sure that the argument works as well in our situation (in the light of
Section 2 we consider essentially admissible sets with urelements). On the way we
show that for countable 8 ‘computable from B’ can as well be defined in terms of
provability in infinitary logic (Theorem 5.4 (3)). In fact ‘i-computable from B’ can
be characterized analogously (Theorem 5.5).

Finally we show that the principle of recursive invariance, which lead to the
definition of i-finite in the first section, can be derived from the more general
principle of model theoretic invariance.

Definition 5.1. Assume that R, S,,..., S, are subsets of L;. Let ¢ be a (finite)

first order formula which may contain besides =, €, R, §1,...,§k additional
predicate symbols T,..., T,. ¢ defines R invariantly implicitly from Sy, ..., S,
over Ly:&there are T, ..., T,, < L such that

<LB,EFLBXLﬁaRasb"',Ska Tl,'-"Tm>':(P

and for any structure (A", E',R’, S%,..., S, T%,...,T’) in which ¢ holds and
which satisfies (a), (b), (c) below we have R =R'NLg; where

(@) (Lg, el LgxLg) is a Aj-elementary substructure of (A’, E');

(b) SINLs=S8,,...,S.NLs=5;

(o) if xe Ly is i-finite and yE'x for some ye A', then ye L.
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We say that R is invariantly implicitly definable (i.i.d.) from S, ..., S, over L,
if there is a formula ¢ which defines R invariantly implicitly from S,, ..., S

The relations ‘R is semi invariantly implicitly definable (s.i.i.d.) from S;, ..., S,
over L;’ and ‘R is absolutely invariantly implicitly definable (a.ii.d.) from
Si,...,S over Ly’ are defined analogously with ‘RS R'N L, respectively
‘R=R" instead of ‘R=R'NL,".

It is obvious that for admissible 8 this is equivalent to Kunen’s definition [22]
(see also Barwise [1]).

Observe that point (a) in the definition says essentially that in our model
theoretic analysis of L; we should consider a A,-formula over Lz as an atomic
formula (an atomic formula is preserved in any model extension).

In the following we will not mention those fixed sets S in the list Sy, ..., 5
which contain just a single element x. This means essentially that we consider
boldface definitions ¢ where certain elements of Lz may be used as parameters
(include the formula Vy ¥z ((S(y)AS(z))— y = 2) in ¢ in order to make sure that
S'={x}).

It is easy to see that R is i.i.d. from S;,..., S, over L iff R and L;— R are
s.iid. from S;,..., S, over Lg. The proof of this fact shows already why it is
advisable to allow additional predicates T4, ..., T,, in the implicit definition.

Further for countable B a subset of Ly is a.i.i.d. over L, iff it is i-finite. This is
an application of compactness for languages with i-finite formulas (Theorem 3.1).

The following two lemmata are needed for the proof of Theorem 5.4.

Lemma 5.2. S5 is s.i.i.d. from B over L for every finite set of equations E and
every B L.

Proof. Consider predicates P;, ..., P which are defined as follows.

P(x):<x is an equation of the form F;(u, v) = w which is true in the standard
interpretation.

P,(x,y, z):©x is the equation cz(y) =z.

P.(x, y):©x is an equation of the form (3 u € z) t(u) =1 where z is i-finite and
y is the set {t(u)=1|uecz}.

P, P,, P are analogous predicates for (R1), (R2), (R3).

For every i€{l,...,6} we fix a 3,L; definition 3w ¢; of P, with some A4,
formula ¢,. The following formula defines S®® semi invariantly implicitly from B
over Lg:

@:=Yx@w ¢,(w, x) > R(x))
AVxyz(@w @o(w, X, v, 2)AB(Y) Az =0)— R(x))AVx(x& E — R(x))
A AYxy((Tw og(w, x, yYIAVVE yR(v))— R(x)). O

In the following we consider the set L;g of i-finite formulas of a A,L5 language
L as defined in Section 3. We take the axioms and rules for infinitary logic as in
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Barwise [1, chapter III], but restricted to i-finite formulas. The symbol F will
always refer to this notion of proof.

Lemma 5.3. There is a finite set E of equations in the equation calculus for
B-recursion theory, which contains function letters h and f, such that for any set of
sentences T < Lig:

ye Ly AThyS fy) =0e SEVR@=0IxeTHE

Proof. One has to translate the axioms and rules of infinitary logic into equations
in E. This has to be done carefully so that the direction ‘&’ can be proved as
well. In view of the complexity of E it is advisable to avoid a purely syntactical
proof of this direction. Therefore we proceed as follows. We define two equation
systems E, and E, such that E = E, UE,. E, consists of equations about f, h and
several auxiliary function letters hy, ..., h,. We make sure that the function
letters f,h, hy,...,h, can be interpreted in such a way by total functions
f,h' ki, ..., k!, from L, into Lg, that all equations in E; are satisfied in the
interpretation,

, 0 ifyelLzAThy,
f(y)z{ i
1 otherwise,

and all the hY,..., h! are B-recursive.
The equation system E, contains only the defining equations for hi,..., h}
according to Theorem 4.1(a) such that

hi(x) =y h(x)=ye S5

One sees from the proof of Theorem 4.1 that further auxiliary function letters will
occur in E, which cannot be interpreted by (partial or total) functions in such a
way that all equations in E, are satisfied.

Conpsider then a computation of f(y)=0 from equations in
EU{h(x)=0|xeT}. At every point of the computation where some equation
h;(u) = v is used (necessarily as minor premise in (R2) because of the structure of
the equations in E,), we cut off the computation of h;(u)=1v. Necessarily only
equations from E, are used in this computation of h;(u) = v due to the structure
of the equations in E; and E,. Therefore we know that h/(u)=v. This implies that
all the equations in the remaining torso of the computation of f(y) =0 are satisfied
in the interpretation with f', k', h, ..., hi. In particular f'(y)=0 holds. This
implies that ye Lig A Thy because of the definition of f.

We describe some of the equations in E;. For the translation of the rule

{W— ¢ lieKiby— A ¢ (K is i-finite),

jeK
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we use two auxiliary function letters hy, h,. We intend that

{¢— ¢ |jeK} if x is the formula,

hi(x)= ¢ — A ¢ and K is i-finite,
jekK
{x} otherwise,
and
x = if x,yew,
my(x, y) ={ e
0 otherwise.

Then the following equation in E; takes care of the infinitary rule:

f(x) = hy(1, @u € hy(x)) ho(1, f(w))).

It is more difficult to translate the rule ¢ — , @ F i because this rule cannot be
reversed. The function letter hy will take care of this problem. We further use
hy4, hs, hg where

x+y ifx,yeow,
hi(x, y) ={ _
0 otherwise,
0 if x=0,

1 otherwise,

hé(X)={

—x if x,ye L,
hg(y,x>={” V€ e

. 0 otherwise,
We add to E; the equations
f(x) . hZ(h'S(h4(f(h6(ya x))9 f(Y)))), hS(xa ya h6(y’ x)))

and
h2(0, h3(x, y, Z)) =0.

We define
1 if f)=0A(f'(y)=1vf(z)=1),

0 otherwise.

hi(x, y, z) ={

Observe that h4 is not B-recursive. Deviating from the treatment of the other h;
we add no equation with h; to E,. The rest is analogous. [

Theorem 5.4. Assume that B is a countable limit ordinal. Then for A, B< L, the
following three relations are equivalent:

(1) A is computable from B;

(2) A isiid. from B;

(3) for some A Lg language L < Lg, which contains relation symbols A, B and
constant symbols x for every x € Ly, and some 3,L; set T of sentences in L;g the
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following holds for every y e L, (define Ag:={B(x)|x < B}U{—B(x)| x¢ B))

yeAS TUAFA(y)
and
VEASTUAgFA(y).

Proof. (1)=(2): It is enough to show that A and L;— A are s.i.i.d. from B.
Assume that f, E are such that

yeASf(y)=0eSEB
and
YEASf(y)=1eSEP,

In Lemma 5.2 it was shown that S®® is s.i.i.d. from B. Then {yeL; | f(y)=0¢
SEB} is as well s.i.i.d. from B (use an auxiliary predicate T for S®? in the implict
definition). Analogous for y¢ A.

(2)=>(3): Assume that ¢ defines A invariantly implicitly from B over L,
according to Definition 5.1. Consider a language L which contains =, € and all
the other relation symbols in ¢ (but we write A instead of R and B instead of S,).
Further L contains constant symbols x for x € L.

T:={y| ¢ is a A, sentence with symbols =, € and constant symbols x
and Ly FytU{Vx(xey— V., x=u)|yeLg is i-finite} U{e}.

Assume that ye A. Every model of TUAg can be construed as a structure
A'=(A',E',R',...) in which ¢ holds and which satisfies (a), (b),(c) in the
definition of i.i.d. Since ¢ defines A invariantly implicitly from B we have
R'NLg = A. Therefore A'EA(y). We have thus shown that TU Ag EA(y). The
Completeness theorem for infinitary languages implies TUAgFA(y) (see [1,
Exercise 4.6, p. 95] for the version which we need here). Observe that this is the
only point where we use that 8 is countable. On the other hand if T U Ag FA(y),
then ye A because (Lg el Ly XLg, A, B,...) can be construed as a model for
TUAg (by the first part of the definition of i.id.). The proof for y¢ A is
analogous.

(3)=>(1); According to Lemma 5.3 there is a finite set E of equations such that

f(z) =0 SEVh@=0keTUAM o s e T ATUAg 2.
Extend E in two steps to E; and E,. First we add equations such that
f(Z) =0¢c SEU{h(x)=0 IxeTUAL}, d>©f(z) =0e SEI’B.

Then add a new function letter g and equations such that

g(y)=0eSEP S f(A(y)) =0e SEB
and
g(y)=1eSP o f(nA(y) =0 SEB. O
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As a special case we get for countable : a subset of L, is B-recursive iff it is
1.i.d. Similar arguments show that gB-r.c. is equivalent to s.i.i.d.
We write TH ¢ if there exists an i-finite proof of ¢ from formulas in T.

Theorem 5.5. Assume that 8 is any limit ordinal. Then for A, B < L, the following
relations are equivalent:

(1) A<;B;

(2) for some ALy language L < L, which contains relation symbols A, B and
constant symbols x for every x € L, and for some 3L set T of sentences in Lig the
following holds for every i-finite set K:

KcASTUAH A\ Ax)
xeK
and
Kcl,—AeTUAE A 1A®x).

xeK

Proof. Obvious. [J

Remark 5.6. (a) Although the i-finite sets coincide with the a.i.i.d. sets from
Definition 5.1 one cannot use invariant definability in order to justify the
definition of i-finite sets out of nothing (i-finite sets are used in Definition 5.1).
But the following principle is one of those very few facts which can be derived
for any conceivable notion of invariant definability: The image of an absolutely
invariantly definable set under an invariantly definable function is absolutely
invariantly definable. Therefore there are not many reasonable recursion theories
on Lg which can be characterized in terms of invariant definability.

In order to derive the principle above one has to explicate the notion of an
invariantly definable function f. One expects the following: If x is an element of
the ‘hard core’ C (in our case Lg) of a collection of structures I, then the value
f(x) can be determined by inspecting the invariant definition of f over any of the
structures IN. If the graph of f (as a subset of C X% C) is an invariantly definable set
it is nevertheless possible that besides (x, f(x)) some pair (x, z) with z¢ C satisfies
the invariant definition of the graph over a certain ¥¢. Then it is impossible to
determine the correct value over IN. Therefore one has to demand in addition
that the invariant definition of the graph of f defines a function over any of the
structures I in question. This is no restriction for any notion of implicit invariant
definability. If @(R) defines ii. the graph of f as a set, then @(R)A
Vxyz(R(x, y)AR(x, z) = y = z) defines f i.i. as a function.

It is then trivial to derive the claimed principle.

(b) Formulas ¢, and ¢, which define according to Definition 5.1 s.i.i.d. sets
B;, B, < I; such that B, is not i.i.d. from B, and B, is not i.i.d. from B, might
look a bit unpleasant. Nevertheless such formulas exist (at least for countable B)
as it is proved in Theorem 7.1 in terms of computations. Thus it is the combina-
tion of both aspects which makes the theory interesting.
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6. More models for axiomatic computation theories

We consider axioms for computation theories which go back to Moschovakis
[32] (he was stimulated by Kleene’s schemes for recursion in higher types [18]).
These axioms were extensively studied by Fenstad [7]. We use the definitions of
his survey paper [6].

A set @ of triples (a, g, z) is considered which satisfies certain closure and
uniformity conditions. The intention of (a, o, 2) € @ is: {a}(¢) =z, where a codes
some computing device. Further there is a well-founded transitive relation < on
0. The axioms demand that < behaves like ‘is subcomputation of’.

A function f is called ®-computable if for some a:

flo)=z&(a, 0,2)€ 0.

A set is called @-semicomputable if it is the domain of some @-computable
function. A set is called @-finite if one can @-computable quantify over it. A nice
feature of this defipition is the possibility to characterize those computation
theories which generalize recursion in normal objects of higher types (Spector
theories): these are the computation theories where the whole domain is @-finite.

A computation theory is called p-normal if it allows some kind of stage
comparison. It is called s-normal if for any (a, o, z) € @ the set of ‘subcomputa-
tions’ {(a’, o', 2") | (a/, o, 2') <(a, 0, z)} is @-finite in a uniform way (this is related
to the coherence requirement in Section 1).

Theorem 6.1. Assume that 8 is a limit ordinal. There is a p-normal and s-normal
computation theory (@, <) such that the @-computable functions are exactly the
B-recursive functions, the ®-semicomputable sets are exactly the B-r.e. sets and the
O-finite sets are exactly the i-finite sets.

Proof. Straightforward. See the related characterization of i-finite sets in
Theorem 2.1(e).

Remark 6.2. (a) Originally Moschovakis considered instead of a subcomputation
relation << a map from @ into the ordinals, which gives the ‘length’ of a
computation. Usually both versions can be used. Theorem 6.1 holds in general
only for the refined version with ‘subcomputations’ due to Fenstad.

(b) The O-finite sets are invariant under @-computable permutations of the
universe for all computation theories.

7. Post’s problem

We consider here the notions of relative recursiveness which were defined in
Section 4. We concentrate on i-degrees, which are the equivalence classes with
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respect to the relation <. One verifies immediately that for all 8 there is a
smallest i-degree 0; (the i-degree of the empty set) and a largest B-1.e. i-degree 0!
(the i-degree of an universal B-r.e. set). A set is B-recursive if and only if it is in
the degree 0,. Further 0; <; 0!.

Since i-degrees coincide with B-degrees for admissible 8, new questions arise
only for inadmissible B. Further for all B the i-degrees coincide with the
Az -degrees in the admissible collapse ;. Now if B is weakly inadmissible (i.e.
B*=<o1cf B<B) the admissible collapse has a particularly nice representation
according to [27]. One can write it as an admissible structure (L, ., &, T) where
T is a regular predicate over L, Which preserves the fine structure of L, .
Therefore constructions of a-recursion theory can be extended to the admissible
collapse of a weakly inadmissible S.

The interesting open questions arise in the case where 8 is strongly inadmissible
(i.e. alcf B<B¥). For these B the i-degrees still coincide with the degrees in the
admissible collapse ;. But ¥ is in this case a very fat admissible set, where no
construction of a-recursion theory succeeds (Stoltenberg-Hansen has shown that
these are exactly those 8 where ¥ is not resolvable, see [7, Theorem 6.3.14]). In
fact one cannot expect that all results from «-recursion theory can be extended to
all fat admissible sets because Harrington has constructed such a set where 0 and
0’ are the only 3,-degrees [14].

Thus for strongly inadmissible 8 the admissible collapse % only supplies ‘soft’
results about 8 like the Barwise compactness theorem in Section 3. Concerning
‘hard’ results the information flows in the other direction. Although ?; may be an
enormously fat admissible set (consider e.g. B=X;+w) it has still got some
regularity which comes from the fine structure of Ls. Therefore one can in fact
solve Post’s problem for these fat admissible sets %, according to the following
theorem.

Theorem 7.1. Assume B is any limit ordinal. Then there are B-r.e. sets A, B of
incomparable i-degree. We can make A, B in addition i-absolute.

Proof. By our previous remarks the solution of Post’s problem in a-recursion
theory by Sacks and Simpson [38] covers as well the case where 8 is weakly
inadmissible. For strongly inadmissible 8 with 8* B-recursively regular Friedman
[10] has constructed B-r.c. sets A, B which are incomparable w.r.t. to <,z and
therefore as well incomparable w.r.t. <; (observe that we don’t get this if A, B are
just incomparable w.r.t. <;). In all these cases one can make A, B in addition
i-absolute by adding negative requirements as in the construction below.

We assume now for the rest of the proof that 8 is strongly inadmissible and that.
B* is not B-recursively regular (i.e. there is a B-recursive function which maps
some & < B* cofinally into 8*). Obviously 8* is in this case a limit of B-cardinals.
For any 8 <B* we write 8 for the next B-cardinal after 8.

For all B-cardinals { <f3* we proceed between ¢ and ¢ similarly as Friedman
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proceeds between 0 and B8* in the case where B8* is B-recursively regular. It just
remains to be shown that these different segments of the construction do not
interfere with each other in a serious way.

Jensen [17] has shown that the combinatorial principle ¢ holds for all regular
cardinals in L. Friedman [10] has introduced effective versions of & for B-
recursively regular 8-cardinals. If B* is not B-recursively regular one can piece
together the O-sequences for the B-recursively regular B-cardinals below B*.
Thus we define the O-sequence (S; | 8 <B*)e L by:

S ._{d) if & is a B-cardinal,
- 2% N L;, where §:= uy= 8(L,F[8 is not cardinal]) otherwise.

Then for every § <B* the B-cardinality of S; is less or equal to the B-cardinality
of é.
Let p be an element of Lg. For a B-cardinal p <™ we define

C,p:={8|p<8<p*Ah[(6U{p)xXw]Np" =8}

where h, is a parameter free ¥,-skolem function for Lg. It is then easy to show
that C,, is closed and unbounded in p*. Further if 6 € C,,, and the set has a 3,
definition over L, with parameter p, then WN&eS; (see Friedman [10] for
proofs).

Fix a B-recursive function P which maps L; one-one onto B*. Further fix a
B-recursive strictly increasing cofinal function g:olcf g — 8.

The construction of A and B proceeds in o1 cf 8 many steps. At every step
v<olcfB we consider every stage § <B* which is not a B-cardinal. At stage
8 <B* we consider all requirements Ry, RZ,, N2y, NPy with e <8 and X e S;.
The B-cardinality of these requirements equals the B-cardinality of §. We assume
that for every stage 8 a well ordering of the requirements at stage 8 has been
assigned in a B-recursive way. If S;, S, are two requirements, then S; has higher
priority than S, if either S, is a requirement at lower stage than S, or S; and S,
arc at the same stage and S, precedes S, in the well ordering of requirements at
that stage.

R tries to prevent that for all x e g*

xeB*—A 3 ifinitt H (x, H€ Wpy,,AHc B*— B).

N2« tries to make sure that if (P !(e)), is a function which maps some
v <ol cf B one-one onto dom R, where

R:={(x,y)|3 ifinite H(x,y, H € W1y, AHS B*—A)},

then there is an i-finite function h € R with dom h =dom R.

Ry uses X as a guess at BN . N2 uses X as a guess at ANJ.

Step vy, Stage 8: Assume Ry is the next requirement to be considered,
L,»F3y(P(y) =) and nothing has been done for R at stage 8 at a previous
step. Then we check whether there is some pair {(x, H) with § <x<8" and H
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i-finite such that x was not restrained from A for a requirement at stage =3,
(x, HYe W,I:i‘ﬁ’(’e), HNX =0 and no element of H is already in B. If it exists, we
take the least such pair, enumerate x in A and restrain all elements of H— & from
B for R{x at stage 6.

Assume N2 is the next requirement to be considered and L, ,FAy(P(y) = e).
We do only something for N2y if (P7'(e)), is a function f with dom fe ol cf
and if there are ordinals vedom f such that for some i-finite H and some
y{f(v),y, H)e :;'i*,’(e))l, HNX =0 and no element of H is already in A. Then for
all v where not already some computation was preserved for Ny at stage § we
preserve now a computation by choosing the tripel (f(v), y, H) above minimal and
restraining H—8& from A for N at stage 8.

The requirements RP, N2 are treated analogously. End of the construction.

For every requirement R on stage 8 at most one element x with § <x <<8" is
enumerated in A or B during the construction and at most the elements of an
i-finite set K are altogether restrained from A or B during the construction. The
latter follows for R=N2, from the fact that the set of steps y where new
computations are preserved for N7y at stage & is bounded below o1 cf 8 (we use

here that ol cf B=<B*). Assume then for a contradiction that for all x € B*
xeB*—A <3 ifinite H({x, He Wp (,AH<B*—B).

Consider some stage & > e such that § € C,, for some B-cardinal p with o1 cf g <
p < B*, where p is the parameter of the construction. Then BNée S; and no
element y with 8 <y <p" is ever enumerated or restrained for a requirement at
some stage <&.

C,, is unbounded in p* and no element of C,, is ever enumerated in A
(because at stage & only elements x >§ are enumerated). Therefore B*¥—A is
unbounded in p*. Consider some x € B*— A with § <x <p" such that x is never
restrained from A for a requirement at stage 8 together with some i-finite H with
(x, Hye W, 1, and H < *—B. Then for the requirement R sns at stage § we
can always do something from some step vy, on as witnessed by the pair (x, H).
Therefore there is a step y where for R ~s at stage 8 a pair (x', H') is chosen, x’
is enumerated in A and all elements of H'—§ are restrained from B. Then
(x',H')e Wp-(, and H'NBN§=. Because of the choice of 6 no element of
H'— & is afterwards enumerated in B for a requirement at a stage less than 8 (we
use here that according to the construction only elements less than o are
enumerated for requirements at stage o). Further by construction no element of
H'—8 is afterwards enumerated in B for a requirement at a stage =4. Thus
H'cB*—B and x'e A, a contradiction.

Finally assume that for some yy,€ Lg

R:={(x, y)|3 i-finite H ((x, y, Hye W, AH< B*— A)}

(0]

has an i-finite domain. Let f be an i-finite function which maps some y,<o1cf 8
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one-one onto dom R. Define ¢ := P({f, y,)). Consider as before some stage 8 >e
such that 8 € C,, for some B-cardinal p with o1 cf B <p <B*. Then no element y
which is restrained for N2*4 s from A will ever come into A (same argument as
before). Thus for every v <y, there is exactly one computation (f(v),y,, H,)
permanently preserved for N2, s at stage 8. Further there is a step vy, <olcf B
at which for every v <y, such a computation (f(v), y,, H,) has been preserved.
Therefore the function h from dom R into L; which maps f(v) on vy, for every
v <+, is an element of Ly and thus i-finite. Obviously we have dom h =dom R
and he R.
This finishes the proof of Theorem 7.1.

Observe that if one does not intend to make A, B i-absolute a simpler guessing
sequence (S;, & < B%) is sufficient. Since in this case one has to preserve for every
requirement at most one computation one can simply take for S; all i-finite
subsets of 6. It is tempting to think that these S5 are as well sufficient for the
requirements N, x But for the considered relations R one cannot a priori fix an
i-finite set H such that only computations with neighborhoods H < H have to be
considered (although we can do this after we know that A, B are i-absolute).

8. Comparison with Friedman-Sacks’ 3-recursion theory

Friedman and Sacks [8] have introduced a different recursion theory on limit
ordinals 8. They define B-r.e. and B-recursive in the same way but use a different
notion of ‘finite’:

x < Ly is B-finite :&>xe L.

This B-recursion theory has been studied in several papers by Friedman
[9,10,11,12], Homer [15] Stoltenberg-Hansen ([42] and the author
[26,27,29, 31]. We call this theory FS B-recursion theory.

FS B-recursion theory is closely connected to the study of X, sets in «-
recursion theory. Problems about 3,I, sets like the existence of sets of minimal
a-degree for all admissible a have remained unsolved for a long time. The study
of 3,L, sets is equivalent to the study of subsets of L, which are 3, definable
over (L, €, C), where C is a complete regular «-r.e. set. This structure has
basically the same fine structure as an initialsegment of L but it is in general
inadmissible (if L, is not 3, admissible). Therefore from the interest in 3 sets
over (I, €, C) one is naturally lead into a systematic study of 3, sets over Lg for
inadmissible B.

The corresponding notion of “finite’ suggests itself from the paradigm (L, €, C).
Since one is still interested in a-degrees (where «-finite sets are used as ‘finite’
sets), one calls a set ‘finite’ iff it is an element of the considered universe. If one



58 W. Maass

analyzes this step in terms of invariance under permutations of the universe one
arrives at the following observation. Even if one studies 3,1, sets “as if they were
r.e.” by considering them as ¥, sets over (L,, €, C) one is still interested in results
about a-recursion theory. Thus the characteristic invariance group is still the set
of all a-recursive permutations of I, — not the set of all 3,L,-permutations of
L,.

But as soon as one starts a new recursion theory where ‘r.e.’ is 3, over
(L, & C) it makes sense to adopt as the characteristic invariance group for this
theory the group of all ‘recursive’ (i.e. A, (L,, € C)) permutation of the universe
L. It is clear that the first point of view leads to FS B-recursion theory and the
second to invariant B-recursion theory.

FS B-recursion has been very successful concerning the solution of open
problems about 3,L, sets (see e.g. the existence of incomparable «-degrees
above (' [12] or the characterization of the jump of a-r.e. degrees [30, 31]).

If one studies FS B-recursion theory for its own sake several strange effects
arise. There are B-recursive sets of nonzero B-degree, there are B-finite subsets
of B-r.e. sets W which at no point of the enumeration of W are completely
enumerated and there are B-r.e. sets which are B-recursively isomorphic but
which have a different 8-degree. Further the definition of ‘B-recursive in’ is lifted
verbatim from «-recursion theory although for inadmissible 8 there is no compu-
tation calculus with B8-finite computations in the background which justifies this
definition. Therefore central points of «-recursion theory (e.g. absoluteness
effects like hyperregularity) become meaningless in FS B-recursion theory.

We expect that one gets in invariant 3-recursion theory more uniform results.
Many considerations in FS B-recursion theory split into cases because of the
lacking invariance (¢.g. the B-degree of a set depends on the chosen representa-
tion, in B:=w+w the B-degree of a set A € w is in general different from the
B-degree of the set {w+n | n e A}). Constructions in invariant $-recursion theory
keep an unmistakable recursion theoretic flavor because in this theory a computa-
tion from a B-r.e. set behaves as in classical recursion theory. This is due to the
fact that every i-finite subset of a B-r.e. set W is completely enumerated at some
point of the enumeration of W. New strategies are only needed because an
enormous number of requirements have to be satisfied in a very short time.

We consider invariant 8-recursion theory as an attempt to capture the fascinat-
ing hard construction problems which arise if one drops the assumption of
admissibility and to present at the same time a sound conceptual framework.

We show in the following two theorems that one can easily recover large parts
of the structure of B-degrees inside the structure of i-degrees.

Observe that in general A <gB does not imply A=<;B and A <;B does not
imply A <;B.

Theorem 8.1. For every 8 one can embed the B-recursive B-degrees into the 3-r.e.
i-degrees (both considered as partial orders).
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Proof. For A cL; define

A;={(K,0)|Ke L, AKNA#@}
UIK, 1) | Ke Ly AK N(Lg — A) £ 8},

A;if B-ree. if A 1s B-recursive.
One can translate i-finite neighborhood conditions H< L; — A; into S-finite
neighborhood conditions K, € A, K, =Lz~ A:

Hel,-A®
3K,, K2ELB(K1: U{K l (K, 1)e H}

Therefore A <z B implies A;=<; B, for B-recursive A, B: H< Ly — A, for i-finite H
is reduced to B-finite neighborhood conditions K; < A, K, < I; — A. These are
reduced to B-finite neighborhood conditions Kl cB, K,c L; — B (because
A =;B) and this is equivalent to (K, e L;—B, (K,, 0)e L;—B.

Since A, is B-r.e. we need not consider i-finite neighborhood conditions H < A;.

In order to show A;=<;B;=> A=<_3B we use the same translations.

In order to get a degree embedding E we define for a B-recursive B-degree a;
E(ag) as the i-degree of A, for some B-recursive A € a,. O

It is easy to check that the degree embedding E from the previous proof always
maps the least B-degree 0 on the least i-degree 0, Further it maps for all
inadmissible B8 the largest B-recursive B-degree 04 on the largest B-r.e. i-degree
0.

We have shown in [27] that for weakly inadmissible 8 one can embed the
B-recursive B-degrees one-one onto the B-r.e. i-degrees (observe that the degrees
in the admissible collapse of 8 are exactly the i-degrees). Such an isomorphism is
not possible for all inadmissible 8. Incomparable B-r.e. i-degrees exist for all 8
(Theorem 7.1) but there are strongly inadmissible B without incomparable
B-recursive B-degrees (Friedman [11]). It will be interesting to see for which 8 an

isomorphism exists.

Theorem 8.2. Assume  is strongly inadmissible and B* is 3,-regular (i.e. no 3,1,
function maps some 8 <B* cofinally into B*). Then one can embed the B-r.e.
B-degrees into those i-degrees a; which are r.e. in some B-r.e. i-degree b;<;a,.

Proof. We use the same embedding as in the proof of the previous theorem: for
A B-r.e. we define E(B-deg(A)) as the i-degree of A;. We have (K, 1)e A;<3 xe
K (x¢ A). Therefore A;isr.e. in A (more exactly one might say ‘i-r.e. in A’ since
only i-finite conditions about A are used). Further A <;A; (trivial). Therefore
a;:=i-deg(A;) is as required with b;:=i-deg(A).
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It remains to show that for B-r.e. sets A, B: A<zB& A;=<;B;. This follows
from the following consideration which enables us to translate for B-r.e. A i-finite
conditions about A, into B-finite conditions about A.

Assume H is i-finite and contains only elements of the form (K, 1) with K e L.
Then H< A, means that V(K, 1)e H3 xe K (x¢ A). We show that in this case
there exists in fact a B-finite set K< L, — A such that

V(K,1)e HIxeK (xeK).

Fix a B-recursive function P which maps Lg; one-one onto B*. Assume H is
i-finite and V(K , 1)e HaxecK (x¢ A). Then the following relation R has
dom R=H:

R:={(K, 1), y) (K, )e HAP '(y)e KAP ' (y) ¢ A}.

R is 3,L; and therefore by Jensen’s uniformization theorem [17] there is a 3,1,
function F < R with dom F =dom R. Since H is i-finite and 8* is 3,-regular there
is some § <B* with Rg F< 8. Then Ky:= PLA]N &€ Lg. Since we can’t be sure
that P7'[8 — K,]€ L; we have to shrink it a little more. By using ¥, uniformiza-
tion we get a 3,Lg function F' which maps every (K, 1)e W on some yed—K,
with P '(y)e K. This function F' is then in fact i-finite and therefore
K:=P '[RgF']is as well i-finite, in particular an element of Lg.

We have shown in [31] that for some weakly inadmissible B the B-r.e.
B-degrees are isomorphic to the i-degrees of the preceding theorem.

9. The lattice of B-r.e. sets

We are looking for a notion of ‘finite’ which is adequate for the study of the
lattice of B-r.e. sets for all 8. The analogous step from @ to « was done by
Lerman [24] (see also his survey [25]). Lerman points out that the a-finite sets are
not an ideal if a* <a. On the other hand he shows that the o*-finite sets (these
are those a-finite sets which have a-cardinality less than a*) capture most of the
properties which are characteristic for finite sets in the lattice of r.e. sets.

We define below for every limit ordinal B the notion of a l-finite set (1 for
lattice). We suggest to consider this notion as the generalization of finite in the
lattice of B-r.e. sets. For admissible B this notion coincides with Lerman’s
a*-finite set.

Lemma 9.1. Assume B is any limit ordinal and M < Ls. Then the following are
equivalent:

(a) there is some 8<B* and a PB-recursive permutation f of Lg such that
M = f[8];

(b) M is B-r.e. and every B-r.e. subset of M is B-recursive;
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(c) M is B-recursive and there is no B-recursive function which maps Ly one-one
into M ;

(d) M is B-recursive and there is some 8 <B* and some B-recursive function
which maps 8 one-one onto M.

Proof. (d) = (a): Assume M is B-recursive and g is a B-recursive function which
maps 8 one-one onto M. L; —M is B-r.e. and therefore according to Lemma 1.9
there is some &, <max(8™, o1 cf B) and a B-recursive function h; which maps &,
one-one onto L; — M. We have §,= B¥ because otherwise one could combine hi'
and g~' in order to project Ly B-recursively into some ordinal less than B*.
Further we have 8, = o1 cf 8, because otherwise 8* <olcf B and both g and h;
have bounded range in Lg. Thus 8, = max(8*, o1 cf B).

One shows analogously that there is a B-recursive function h, which maps
max(8*, o1 cf B) one-one onto L; — 8. hyoh,' can then be used in order to extend
g:8 — M to a B-recursive permutation of Lg.

(a) = (d) is trivial.

One verifies easily that (d) is equivalent to (b) and (c) by using again Lemma 1.9
and the basic properties of B*.

Definition 9.2. A set Mc L, is called [-finite if there is some 8 <B* and a
B-recursive permutation f of L; such that M =f[8].

It is obvious that i-finite sets can be defined in the same fashion with o1 cf
instead of B8*. Thus for every B the ordinals o1 cf 8 and B* are the two numbers
which are characteristic for the two basic aspects of finiteness in B-recursion
theory. In the context of computations one arrives at i-finite sets, in the context of
the lattice of B-r.e. sets one arrives at l-finite sets. For the former aspect
boundedness is an essential part of ‘finite’. This is different in the lattice of r.e.
sets where finite sets play the role of ‘sets of measure zero’. Thus in principle they
might even be unbounded as long as they are thin enough. This phenomenon did
not appear in a-recursive theory because there are no thin «-recursive cofinal
sets. But if o1 cf B <B* there exist very thin 8-recursive cofinal sets.

The aspect of 1-finite sets as ‘sets of measure zero’ is described in (¢) of Lemma
9.1. In part (b) of this lemma it is verified that l-finite sets possess another
property which is characteristic for finite sets in the lattice of r.e. sets: the induced
lattice on a l-finite set is trivial (a Boolean algebra). Further from (b) one sees
immediately that the 1-finite set form a definable ideal in the lattice of B-r.e. sets.

We study in this paper only one other lattice theoretic concept: simple sets.

In order to give a correct definition of simple sets in B-recursion theory we
consider &*(8) — the quotient lattice of the lattice of B-r.e. sets obtained upon
factoring by the ideal of l-finite sets. The elements of €*(B) are equivalence
classes with respect to the congruence relation:

U=V:edl-finite I[[Uc VUIAVCUUIDD.
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According to Lerman [25] one calls an element a of a lattice (L, v, A, 0, 1)
L-simple if for all be L

anb=0=>b=0.

For the considered lattice €*(B) this definition says that the equivalence class of
a B-r.e. set W is E*(B)-simple iff every B-r.e. set Uc Lz — W is I-finite.

It is customary in recursion theory to exclude from this lattice theoretic
definition the largest element 1, i.e. the class of B-r.e. sets with I-finite comple-
ment. Thus we arrive at the following definition, which coincides for admissible
ordinals with the standard definition in a-recursion theory (see Lerman [25]).

Definition 9.3. A B-r.c. set W is simple if Lg — W is not I-finite but every B-r.e.
subset of L, — W is l-finite.

If B is admissible or weakly inadmissible a B-r.e. set W is simple iff Ly — W is
not i-finite but every B-r.e. subset of Lz — W is i-finite (because an i-finite set
which is not 1-finite contains a 8-r.e. non B-recursive set).

We consider in Section 10 simple sets for strongly inadmissible 8 with B*
B-recursively regular. For these B a B-r.e. set W with Lz —Wc B* is simple iff
Lg — W is unbounded in B* but every B-r.e. set U< L; — W is bounded below B*
and this holds iff L; — W is unbounded in B* but every Ue Lg with U< Lg— Wiis
bounded below B*.

10. A B-r.e. degree without a simple set and a splitting theorem for simple 3-r.e.
sets

If B is admissible or weakly inadmissible then every B-r.e. non B-recursive
i-degree contains a simple set. This comes as a side result out of the regular set
theorem in «-recursion theory, which says that every a-r.e. a-degree contains an
a-r.e. set A which is regular (ie. V8<a (ANLsel,)) (see [28]). Now if
f:a — A is an a-recursive enumeration of a regular non a-recursive set A, then
the deficiency set

D:={x|3y>x (fly)<f(x))}

is simple and of the same «-degree as A.

For strongly inadmissible 3 regular B-r.e. sets are very rare. E.g. for B =N, +w
every regular B-r.e. set is of degree 0;. But for these 8 one can still construct
nontrivial simple sets. In fact a solution of Post’s problem in general produces
automatically simple sets. Theorem 10.4 below shows that these simple sets have
some of the benefits of regular sets in a-recursion theory: we can split them into
two r.e. sets of lower degree. On the other hand the question which B-r.e.
i-degrees contain simple sets is more difficult than the analogous question about
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regular sets in a-recursion theory. We produce in Theorem 10.3 a -r.e. non
B-recursive i-degree without a simple set. Both constructions rely on the follow-
ing combinatorial lemma.

Lemma 10.1 (ZFC). Assume p and k are cardinals and p<cfk. Let M be an
unbounded subset of k and f be a function which assigns to every element of M some
subset of « of cardinality less than p. Then there is some & <k such that

Vo<k3Ir=o(reMaf(ryN(oc-8)=0).

Proof. Assume such a § does not exist. Then
Vé<kIo<kVr=o(te M—f(r)N(c—8)#0).
Define a strictly increasing sequence (8,) of ordinals less than k as follows:

8o:=0;

v<p

8,41 is the least >4, such that o <« and

Vizo(reM—f(r)N(oc—6,)#0);
O, :=supd, for A limit.
<A _
Since p <cf k this sequence is well defined and 6 :=sup, ., 8, is less than «.
Take some 7€M such that 7= 4. Then

Yoy <p(f(HN(5,:1-8,)#9).

But this is impossible since the cardinality of f() is less than p. O

The preceding lemma is closely related to the familiar A-System lemma, which
is often used in forcing and combinatorics (see Kunen [23] and Jech [16]). In fact
Lemma 10.1 supplies a different proof of the A-System lemma, which follows as a
corollary.

Corollary 10.2. Assume v is a cardinal with 2° =v™. Then for every family W of
subsets of v** of cardinality <v with |W|=0v"" there is some W< W such that
|W,|=|W| and W, is quasi-disjoint (i.e. there is some z such that ¥V x,ye€
W, (xNy=2z).

Proof. Let f be an enumeration of W with dom f=0v"". By Lemma 10.1 there is
some 8 <v*" such that
Vé<kIAr=0o (f(r)N(oc—8)=0).

Thus we can choose some W'<c W such that |W’'|=|W]| and for all x,ye W’
xNycé. Since |8|<v* and (v)’=v"<v*" there is some W;< W’ such that
|W,|=|W'| and all elements of W, have the same intersection with 8.
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Observe that Lemma 10.1 works as well if « is the successor or a singular
cardinal p. This situation will actually occur in the application of Lemma 10.1 in
Theorem 10.3 and Theorem 10.4 (e.g. for B =8,,;+¥;). One can not use the
A-System lemma here, because it does not hold for k =p", p singular, W a
collection of sets of size less than p, card W =«.

Theorem 10.3. Assume olcf B<B* and B* is a regular cardinal in L. Then there
is a B-r.e. i-degree a>0 such that no i-degree b<a contains a simple set.

Proof. We use the combinatorial Lemma 10.1 with k:=8* and p:=0c1cf 8 and
in addition . We construct a $-r.e. non B-recursive set A < 8* such that B &, A
for all simple sets B. We can assume without loss of generality that L; — B < *. If
D is any other simple set we consider instead B:=P[D]U(L;—B*), where P
maps Ly one-one onto B*. B is again simple and of the same i-degree as D.

If B is a simple set with Lg — B < ¥, then L; — B is unbounded in B* but every
B-re. set U= L; —B is bounded below B*. If B ={e}*, then there is a stage of
the construction where {¢} computes from the so far enumerated part of A, that
unboundedly many x e 8* are not in B (we use here that olcf 8 <B*). The
strategy is then, to preserve these computations for unboundedly many arguments
x. The set of these arguments is then an element of Lz and unbounded in L, —B.
This contradicts B simple.

The burden of this strategy is, that a single requirement may prevent an
unbounded subset of B* from A. Thus we get problems to satisfy the positive
requirements which make A non B-recursive.

Our escape is the fact that not all unbounded subsets of 8* are equal. If we
consider e.g. complements of closed unbounded sets in 8%, then these comple-
ments are so thin, that the union of less than 8* many still does not fill up 8*. By
the help of Lemma 10.1 we may choose an unbounded set of arguments x such
that all the computations {e}*(x) together use only some part of A which lies in
the complement of a closed unbounded set. Concerning the 8§ <B* given by
Lemma 10.1 we use ¢ in order to guess at A N 8.

Fix a O-sequence (S | 8§ € B*)e L as in the proof of Theorem 7.1. Let P be a
B-recursive function which maps L, one-one onto B*. Let q:olctB— B be
B-recursive, strictly increasing and cofinal.

At stage § < B™ we consider requirements N, x and P, where e <8 and X € S;.
The cardinality of these requirements is less than B*. N, x tries to prevent that
B <; A via P'(e) for a simple set B. N, x uses X as a guess at AN§. P, tries to
prevent that Wp-(,y =Lz — A.

The construction proceeds in olcfB many steps. At step y we use all
information available in L,,,. At every step vy we run through all stages § <p*
and consider all requirements at stage § in some fixed order.

Step v, stage 8: Assume N, x is the next requirement which is to be considered.
We do only something for N, x, if P"'(e) converges in L,,, and if never before
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something was done for N, x at stage 8. In this case we only do something if ®
holds:
® Y o<B*Ar=0c (reB*Adi-finite H ((r, H)e WPL:':;;»
AHN(e—-8)=0AHNX=0
A(no element of H is already in A)).

If ® holds we choose a sequence (t,, H, ), g« such that (r,), g+ and (min(H, —
8)), g+ are strictly increasing and for every vH, is i-finite, (r,, H,)e W‘I:‘l‘.”(’e),
H, N X =, no element of H, is already in A and such that |J{H, | » <B*} lies in
the complement of a closed unbounded subset of 8*. One gets such a sequence by
constructing simultaneously a closed unbounded set in the complement of
U{H, | v<B*}, using ®. After we have fixed such a sequence we restrain
(U{H, | v<p*)—38 from A for N, at stage 8.

If P, is the next requirement at stage 8§, we only do something if no element of
Wﬁ‘i‘?(’e) has so far been enumerated in A. If there is some x € W';‘i‘.’(’e), S <x<B*,
which is not restrained from A for any requirement at some stage <5, we
enumerate the least such x in A.

End of the construction.

In order to see that A has the desired properties we note first that for every
stage 8 the set of x which we enumerated in A for requirements at stage <9 is
bounded below B*. Since § is not enumerated in A for a requirement at stage &
and o <cf B* there is a closed unbounded set C in §* which is disjoint from A.
Further for every stage 8 there is a closed unbounded set C; in 8* such that no
element of C; is ever restrained from A for a requirement at stage <8 (use the
fact that the intersection of <B* many club sets in B* is club).

Assume for a contradiction that Lz — A = Wp-y,,. Consider some stage 8> e.
Then CsNC is closed unbounded in B* and C;NC< Wp-y,,. Take any xe
Cs N C with x> 8. Take vy large enough such that P~'(e) converges in L,,, and
X € Wf,i‘:(’e). Then we make Wp-1,,N A# @ during the consideration of P, at stage
§ of step v if this was not already done before. Therefore A is not 3-recursive.

Assume now for a contradiction that B <5; A via P~'(e) for some simple set B
with L; — B < B*. Then there is some stage vy, such that P~'(e) converges in L,
and there is an unbounded set of T 8*— B such that for some i-finite H with
HcL;—A we have (1, H)e Wﬁi‘ﬁ(’e) (if such a vy, does not exist we get a cofinal
function from ol cf 8 in 8%, contradicting the regularity of 8*). We apply then
Lemma 10.1 to the function which assigns to these T some H as above. Thus
there is some & <B* such that for all o <B* we can find some 7 where the
associated H satisfies H N (o —8)=0. Go to some stage §,= 8 such that A N§,e
Ss,- At stage -y, we consider then N, 45, at stage 8. For this requirement ® is
at this point satisfied. Therefore at some point of the construction a sequence
(1., H,),cp+ is associated with N, o5, at stage 8,. Only boundedly much is
enumerated in A for positive requirements at stages <§,. Therefore there is some



66 W. Maass

vo<B* such that H,c L;— A for v=1w,. Since B<;A via P '(e) we have then
7,¢ B for v=,. Thus {7, | v= 14} is an unbounded subset of Lz — B which is an
element of Lg. This contradicts B simple.

This finishes the proof of Theorem 10.3.

Theorem 10.4. Assume o1cf B<B* and B* is 3,-regular (i.e. there is no 3,L
function which maps some 8 < B* cofinally into B*). Then for every simple B-r.e. set
W there are B-r.e. sets Wi, W, such that W NW,=0, W=W,UW,, W,<;W,
W<, Wand W=, W, @ W,.

Proof. No Splitting theorem has so far been proved for the strongly inadmissible
case because the familiar preservation strategy of Sacks leads to many problems.
Fix some B-recursive strictly increasing function q which maps o1 cf 8 cofinally
into 8. It may very well be that for every y<olcf B the yth requirement
demands that from a certain point on an initial segment of W, of length q(vy) has
to be protected. Since every element of W must end up in W, or in W, this means
that nearly no computation from W, can be protected for the sake of a
requirement of priority =o 1 cf 8. If 8 is admissible or weakly inadmissible one
can make the list of requirements so short, that no requirement of priority
=0l cf B exists (see [15, 31, 40, 41]). There is no way to do this here because B
may have a larger cardinality than o1 cf B.

Our first step is to project the problem into 8* so that we can make use of the
assumed regularity of 8*. It is obviously enough to solve the following problem:

Given some B-r.e. C < 8% such that 8*— C is unbounded in 8* but every B-r.e.
set UcB*—C is bounded below B*. Construct B-r.e. sets A, B such that
ANB=0, C=AUB, A<,;C, B<,C and C=;A ® B.

As in the proof of Theorem 10.3, strong inadmissibility of 8 has one good
feature: If C={e}*, then there is a stage in the construction where for an in B*
unbounded set of arguments there exist computations of {e} from the constructed
part of A. At this point we have then a lot of choice concerning which
computations from A we want to preserve.

But the similarity to the proof of Theorem 10.3 ends here because we can no
longer afford to restrain forever any in 8* unbounded set of elements from A for
a single requirement, no matter how clever we choose this unbounded set. Every
element of C is put in A or in B and all the elements which are restrained from A
will injure computations from B.

Fortunately in the considered situation the Sacks preservation strategy does not
require to preserve forever a large number of computations for a single require-
ment (although this has so far always be done). For a single requirement it is
enough to preserve for a limited time a large number of equations C{x) ={e}"*(x).
This preservation finally forces the appearance of an inequality for some x, which
is enumerated in C. From that point on we only have to preserve the single
computation {e}*(x,), which uses only i-finitely much from A. The elements
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which were restrained in order to preserve the other computations {e}*(x) are
released and can now be restrained from A for the sake of other requirements. A
combinatorial trick makes sure that no single element is restrained unboundedly
often for changing requirements. Therefore we can finally put every element of C
in A or B.

In order to make the combinatorial argument work it is essential that we choose
very carefully the large number of equations which we preserve for a limited time.
Lemma 10.1 supplies again a stage § <B8* where a particularly convenient choice
is possible.

Observe that it is not possible to make A, B in addition simple because each
lies in the complement of the other.

We start now with exact construction of A, B and assume that a 3L,
definition of C has been fixed.

Let P be a B-recursive function which maps Lg; one-one onto B*. Fix a
O-sequence (S5 |8 <B*)e Ly as in the proof of Theorem 7.1.

We have for every e € B* requirements N2, N2. N2 tries to prevent that

V x € B* (x¢ C <> i-finite H ((x, W)e Wpi oA H ¥ — A)).

On stage 8§ <B* we consider all requirements N2, N2x with e <8 and X € S;.
N2« considers X as a guess at A N8S.

There is a B-recursive function h which maps for every 8 the requirements
considered at stage & one-one onto some ordinal h(8) with & < h(8) < B*.

We write then the requirements at stage 8 in the form (R;));<pnes)-

The construction proceeds like in Theorem 10.3 in o1lcf 8 many steps. At
every step y <ol cf B8 we run through all stages 8 and consider the requirements
(Rs,j)i<n(s in their assigned order.

Construction:

Step v, Stage 8. Assume R;; is the next requirement to be considered.

Assume that Rj; is some NZ2y. We do only something for Niy if L,.,F
[[y(P(y)=e)].

If Rs; was never activated before we activate R;; now if

(%) Vo (8 <o <B*— Ar(oc <7 <p* AT ifinite H(r, Hye WL

P '(e)
A(no element of H is already in A)

AHc(B*—a)UsAHNX=0))).

In this case we associate a sequence (7,, H,), g+ with R;; which is defined by
recursion as follows. Assume (t,, H,), ., is already defined and v <B*. Define

o, :=suply € 8* | (some sequence (T, FI‘, )o<g+ has been associated with a
requirement on stage <8 or some R;;, with j'<j and y € H, for some
p=v)v(y=r, for some v'<v)v(ye H, for some v'<v)}.

We define then (r,H,) as a pair (7, H) which has a relationship to
o:=max(o,, 8)+1 as in (*).
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In case that Rs; =N was already activated at some step before but is not yet
finished we check first whether some element of 8 —X has been enumerated into
A. If yes, we finish R,; now (nothing else is done for R;;). If no, we check for the
sequence (,, H,) which was associated with R;; before whether for some
v <B* L,,,F[7, € C] and no element of H, — & is already in A or has before been
restrained from A or B for some requirement on stage <8. If such a v exists we
choose it minimal and restrain H, —8 from A for R;;. R;; is then finished.

At the end of step y we consider all y such that L,,,F[ye C] but y is not yet
enumerated in A or B. If y is not in some H, — 8 for some sequence {(t,, H,), g+
associated with some activated but not yet finished requirement R;; we enumer-
ate now y in A or in B. We look then at the requirement of highest priority for
which y has been restrained. If this requirement restrains y from A then we
enumerate y in B. If it restrains y from B or if y is not restrained for any
requirement we enumerate y in A.

We say that R;; has higher priority than Ry - if §<<8' or § =8 and j<j'.

End of the construction.

Fact 1. Every requirement Rs; = N2y which is activated is later finished.

Proof. Let (7,, H,), g+ be the sequence associated with Rs;=NZx when it is
activated.

Obviously Rj; is finished if some element of § — X is enumerated in A. Thus we
can assume that A N&§ < X. It is already enough to know that 8* is 3,-regular in
order to see that there is some v, < B8* such that for v = v, no element of H, — § is
ever restrained for some requirement on stage <8 (of course we use here as well
that H, — & contains for large v only large elements). Further as long as R;; is not
finished no element of any H,—§& is enumerated into A according to the
construction.

Therefore as soon as v is large enough such that L,.,F[, € C] for some v=y,
(such a vy exists by the properties of C) R,; will be finished. [

Fact 2. For every element of y<B* there are only finitely many requirements R
such that y € H, — 8 for some v <B*, where (t,, H,), g« is the sequence associated
with Ry .

Proof. If y is in some H, —§ of a sequence (7,, H,) associated with Rs; and y is
as well in some H,—8 of a later defined sequence (r,, H,) associated with a
requirement R;; of lower priority than Rjs;, then v <p by construction (see the
definition of o, in the construction). Therefore this cannot be iterated infinitely
often.

But still there remains something to prove because we may have v=p if R;; is
of higher priority than Ry

Assume the claim is false for y. Let M be the set of the first w requirements R;;
(ordered by priority) such that ye H,—§ for some v <p*, where (r,, H,), < is
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the sequence associated with R,;. We consider then out of M the first w
requirements (Rj ;)ic, in the order of their activation during the construction.
This sequence contains a subsequence (Rj, ; ).eo such that for every ncwR;, ;-

has higher priority than R, .  (we use here the definition of M). If (1,; H, ), -»
is the sequence associated with R ; we write than v, for the v with ye H, — 4, .
Then by construction we have v, >, > - - -, a contradiction. [

We show now that C={P !(e)}* implies that the requirement N2 succeeds at
some stage 8 > e, which leads to a contradiction. In order to prove the existence of
such a stage 8 one can directly apply the combinatorial Lemma 10.1 if ™ is
sufficiently regular. In order to get along only with X,-regularity of B* we give in
the proof of Fact 4 below an effective version of the proof of the combinatorial
lemma. The following Fact 3 will be needed for this effective version.

Fact 3. Assume that for all x € B*
x e B*—CeIi-finite H ((x, HY € Wp-1(yAH<S B*— A).
Then for every yo<olcf 8 there is some vy such that

Yo=v<olctB

and

Vé<B*Vo<B*Ir (o <r<B*ATi-finite H
(«r, Hye W;;“_‘.”(‘E)AHOA N&=0A (no element of H is enumerated in

A by the end of step v))).

Proof. Assume the contrary. Then for every y with yo=<vy<<olcf B there are
8,, o, <B* such that no 7= 0, satisfies the condition above. It is enough to show
that the o, can be chosen in such a way that ¢ :=sup{o, | vosvy<olcfB}<B*.
Because then we can take some 1> & with 7€ 8*— C. For this T there exists some
i-finite H with {t, H)e WIL,“,?()E) for some vy, =1y, and H< B*— A. Because 7=0,,
this is a contradiction to the properties of o, .

We show now that one can assign ordinals §,, o, as above by a 3, function. In
order to express that §,, o, have the correct properties we need as well 8, A. In

order to see that the function § — 8 N A is X,L; we consider the B-recursive set
A,:={(v,x)| v<olcfB and x is enumerated in A by the end of step v}.

For every 8 <g* the set A, N(c1cf B x8) is an element of L and the function
8 — A, N(olcf Bx8)is 3,Ls. One can express therefore by a 3, formula that for
vy<olcfpB some tuple (x,, x,, X3, x,) has the properties which we expect from
(8,,0,A N(clctBX8,), ANS,). With ,-uniformization we get a 3,L; func-
tion y—(8,, 0, A,N(c1cf Bx8,), ANS,) and thus in particular a 3,L; func-
tion y— o,. Since B* is 3,-regular the set {0, | yo<vy<olcfB} is bounded
below g*. O
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In the following let p be an element of Lg which contains all parameters of the
construction.  We  know then that AMNS§ BNéeS; for b€
C, :={8<p*| hy[(8 U{p) x @]N B* =8} as in the proof of Theorem 7.1.

Fact 4. Assume that for all x € B*
x € B¥—CoAi-finite H ((x, HY e W, yzAH < B*— A).
Then for every yo<olcfB and every 8,<B* there are v, 8 such that yo<vy<
olcf B, §,<6<B* 8eC, and
Vo <B*3r (o<1 <B*Ai-finite H ((r, Hye W1,
AHNANS=0A(no element of H is enumerated
in A by the end of stage y)A HN(o—3)=0)).

Proof. Take v=1y, according to Fact 3. Assume for a contradiction that the
desired 8§ does not exist for this y. Then we can assign to every 8 € C, some o € C,
such that 8 <o <B* and for all {r, H)e W;i‘r(’e) with o<+<g* HNANS=0
and no element of H is enumerated in A by the end of stage y we have
HN(oc—8)#@. We define a function h:alcf B — B* such that for v<olcff
h(v+1) has the same relationship to h(v) as o to § above. We define h(A)=
sup,<, h(v) for limit ordinals A. In order to show that he L; we first define a
function g which assigns to v not only an ordinal o = h(») but in addition

(A,N(olcfBXxa), ANa, (B*—C,),N(alctBXa), (B*-C)Noa).

A, is again a B-recursive set associated with A (see the proof of Fact 3) and
(B*—C,), is an analogous B-recursive set associated with the B-r.e. set B*—C,.
The exact definition of g is as follows. Fix some 8§, = §, such that ,¢ C,.

g(0):=(8,, A,N(c1ctBx8), AN, (B*—C,),
N(olct Bx8)), (B*—C,)N8y);
glv+1):={a, A,N(clcf BXa), ANa, (B*—C,),
N(olctBxo), (B*—C,)No)
where o > (g(v)), has the same properties w.r.t. (g(v)), as ¢ w.r.t. 8 above and is
minimal with this property;
g\):=(o, A, N(glcf Bx0a), ANa, (B*—C,),
N(olcf B xo), (B*—C,)No)

where o =sup, ., (g(v)), for limit ordinals A.

In order to show that ge L, we prove by induction on v (v<olcfB) that
gl veLg«. The induction step is only nontrivial if v is a limit ordinal A. In this
case one knows already that g ! pe Lg+ for p<<A and one can easily see that the
function p — g | p for p<A is 3, definable over L. One has to express in this X,



Recursively invariant 3-recursion theory 71

formula that for v+1<p (g(r+1)), is minimal such that (g(r+1)),€C,
and. ... At this point we use that the corresponding initial segments of C, are
included in the values of g So glA is 3,[; and therefore
g:=sup{(g(v))o | v <A}<B™* because B* is 3, regular. But then we can give as
well a 3,L; definition of g A because we can use the sets ANe, C,Neel, as
parameters in this 3, L, definition. Since g| A is 3;L; and bounded below B* it is
in fact an element of Lg«.

Thus we have shown that ge L,. Therefore 5:=sup{(g(v))o| v<olcfB}<pB*.
Since y was chosen according to Fact 3 there is a pair (7, H)¢e WI';‘i(,”(’e) such that
5 <r<B*, H i-finite HNA NS = and no element of H is enumerated in A by
the end of step y. By the definition of g we have for every v<
olctB HN((g(v +1))y—(g(¥))o) #9. Since the function v— (g(v)), is strictly
increasing this is a contradiction to H being i-finite. [1

Fact 5. There is no e <B* such that for all x € p*

xeB*—CeJi-finite H ((x, H e Wer(e)AH< B*—A).

Proof. Assume the contrary. Take some <y,<olcfB such that L, F
dy (P(y)=e) and some 8, such that e<§,<B*. For these 7, 8, let v, 8 be
ordinals as in Fact 4.

Since & € C, we have A N§ € Ss. Further N2, 15 On stage § is activated at step vy
if it was not already activated before. According to Fact 1 there is then some step
v, where NZ2,ns on stage § is finished. Since no element of §—(ANSJ) is
enumerated into A the requirement is finished because there is a pair {r,, H,) out
of the sequence associated with Ni*4 -5 on stage & such that L, ,F[7, € C] and no
element of H, —§ is restrained for some requirement on stage <8 and no element
of H,—§ is already in A. all elements of H, — 8 are then restrained from A for
N24ns On stage 8 when this requirement is finished.

Since 6 € C, no element of H, — 8 is ever restrained for a requirement on stage
<<8. Further no element of H,— 48 is ever restrained for a requirement on stage
=3§. after it is restrained for N2y s on stage 8. Therefore no element of H, — 8 is
ever restrained for a requirement of higher priority.

Thus H, = B*—A and 7,¢ C and (r,, H,)€ Wp-1,,, a contradiction. [

Fact 6. C=A UB.

Proof. By Fact 1 and Fact 2 for every y € 8* there is a step after which y is never
restrained by an activated requirement which is not yet finished. [

It follows as in classical recursion theory that A <;C, B=<;C and C=;A®B.
Therefore by Fact 5 and Fact 6 A and B have all the desired properties. This
finishes the proof of Theorem 10.4. [
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