
1

Annals of Mathematical Logic 2l (1981) 27-73
North-Holland Publishing Company

RECURSMLY TNIVARTANT p-RECURSTON THEORY

Wolfgang MAASS*
Deparnnent of Mathematícs, MIT, Cambrídge, MA, U.S.A.

Received 13 Novembe¡ L980; revised 18 August 1981

'We int¡oduce recursively invariant p-recursion theory as a new approach towards recursion
theory on an arbitrary limit ordinal É. We follow Friedman and Sacks and call a subset of
BB-recursively enumerable if it is.Xr-definable over Lu. Since Friedman-Sacks'notion of a
p-finite set is not invariant under p-recursive permutations of p we turn to a different notion.
Under all possible invariant generalizations of finite there is a canonical one which we call
i-finite. We consider fu¡ther in the inadmissible case those criteria for the adequacy of
generalizations of finite which have earlier been developed by Kreisel, Moschovakis and others.
We look at infinitary languages over inadmissible sets Lu and the compactness theorem for
these languages, the characterization of the basic notions of p-recursion theory in terms of
model theo¡etic invariance, the deflnition of B-recursion theory via an equation calculus and
axioms for computation theories. In turns out that in all these approaches the i-finite sets are
those subsets of B respectively Lu which behave like finite sets.

Invariant B-recursion theory contains classical recursion theory and c-recursion theory as

special cases. We start in the second half of this paper the systematic development of invariant
B-recursion theory for all lfunit ordinals B. We study in particular i-degrees, which generalize
Turing degrees and o-degrees. Besides 0 (the degree of p-recursive sets) and 0' (the largest
p-r.e. degree) there exist incomparable B-r.e. i-degrees for every limit ordinal B. Similar as the
step from ar to o gave rise to the introduction of regular respectively hyperregular sets we
arrive in invariant p-recursion theory at the new notion of an i-absolute p-r.e. set. This notion
is useful in order to describe a difference among hyperregular B-r.e. sets wbich occurs
exclusively in the inadmissible case. The study of i-degrees is most difficult for those B which
are strongly inadmissible (i.e. ø1cf P<P*). For those strongly inadmissible p where B* is
regular we give two new constructions which rely heavily on the combinatorial properties of
regular cardinals (O, closed unbounded sets and the Â-System lemma). We construct a p-r.e.
degree ø )0 such that no degree 6 <¿ contains a simple set and we prove a splitting theorem
for simple P-r.e. sets. We base the definition of a simple set on the general notion of a l-finite
set.

1. Introduction and foundations

B is always a limit ordinal in the following. We want to study recursion theory
on B. It is convenient to have a domain which does not contain ordinals only. The
elements of p are not even closed under pairing x, ) + {x, y}. Therefore we take
as domain instead of B a slightly larger collection of sets which \rye can build up
mechanically on our way through B. A very natural choice for such a domain is
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28 W. Maoss

Lu - the collection of all sets which are constructible on levels less than B. Lu is

generated by iterating B times the operation

u --->De|(u)

where

Def(ø)':{x c u lx is definable over (u, e I uxu)
by some first order formula with
parameters from ø).

Define

Lo:Ø,

Lr+r: Def(L"),

L^ : U {L" I r < À} for limit ordinals À.

Every L", is transitive, the ordinals in L, are exactly the ordinals less than "y and

for ^y<6 we have L"çLõ. Further the function yèL1 from p into Lu is XrLu
definable for every limit ordinal B (see Devlin [3] or [a] for details concerning the

constructible hierarchy).

Definition 1.1. A set A c L, is B-recursiuely enumerable (É-r.e.) iff A is -Ðrl-u

(i.e. A is definable over Lu by some l1-formula which may contain elements of
Lu as parameters).

The definition of a B-r.e. set and a B-recursive function is due to Friedman and

Sacks [8].
A canonical enumeration procedure is associated with every Ir-definition <p(x)

of a B-r.e. set A:
Generate successively the levels Lo,Lr,...,Lr,... (y<p) of the constructible

hierarchy up to B. Enumerate at every step y those elements z into A which

satisfy LrFtp(z) and which have not already been enumerated before.

This gives an enumeration of the set A because we have for every zeLu

LuF eQ)eat < P Q,È q(z)),

using the fact that 9 is a .Ir-formula.
A p-r.e. set together with the described enumeration procedure is a perfect

example for the general concept of a recursively enumerable set. This concept was

explicated e.g. by Post [34] and Sacks [39]. They describe a recursively enumera-

ble set as a generated set. The set is generated by a predetermined effective

process which puts at certain steps elements into the set. Once an element is

placed in the set, it stays there. We follow Sacks [39] and speak of a RE set if we

want to appeal to this general concept. The example shows that the concept of a
RE set does not require any strong closure conditions of the considered domain
(like e.g. admissibility).

ù
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Definition t.2. A partial function f :Lu-> Lu is called partial B-recursiue iff the

graph of / is p-r.e. If / is in addition defined on all elements of Lu, then we call /
p-recursive.

A canonical way to compute a partial p-recursive function / comes together

with its definition. we fix a ZrLu definition of the graph of /. Given x € Lß we

staft to enumerate the graph of / step by step as described before. At every step ^y

we check whether some pair of the form (x, z) occurs among the enumerated

elements. If we find such a pair (x, z) we say that the computation of f(x)
converges (at step y) with value z.

At this point the question arises which properties of subsets of Lu one should

study in p-recursion theory. The second basic concept of recursion theory is

finiteness. Therefore above all we have to find out which sets are playing the role

of finite sets in B-recursion theory. We choose here the principle of recursive

invariance as our guide.

In mathematics the study of invariant properties was first formulated as a

general program by Felix Klein (Erlanger Programm,1872). Felix Klein suggested

to define branches of mathematics in terms of a space X (i.e. a set X) and a group

G of transformations acting on that space (i.e. a set of permutations of X which is

a group under the law of composition (/, g)-f . g). A property of subsets of X is

called G-invariant if for every set A c X and every /e G we have that A has this

pfoperty iff f[A] has this property. The branch of mathematics determined by X
and G is the study of G-invariant properties.

Klein's program has penetrated large parts of modern mathematics. It was

introduced into (ordinary) recursion theory by Rogers [35]. Here X is the set of

natural numbers and G is the group of all recursive permutations of the natural

numbers. Instead of G-invariant one says recursively invariant. All important

notions of ordinary recursion theory (except subrecursive hierarchies etc.) are

recursively invariant. In fact Rogers [35] states: 'The notion of recursive in-

variance characterizes our theory and serves as a touchstone for determining

possible usefulness of new concepts.'

It seems that Klein's program was never explicitly mentioned in generalized

recursion theory. Nevertheless one followed it intuitively. For example in a-
recursion theory and in recursion theory in higher types all the considered notions

are invariant under the approximate group of recursive permutations.

In p-recursion theory the definitions of a B-recursively enumerable set and of a
p-recursive function are very convincing. In fact these are the only definitions in
p-recursion theory, which are immediately justified by our intuition. Since there is

a canonical choice of X and G we can use Klein's program as a guide for the

definition of further notions in p-recursion theory.

Definition 1.3. A property of subsets of Lu is called recursioely inuariant iff it is
G-invariant, where G is the group of all B-recursive permutations of Lu.
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We want to study, which subsets of Lu are playing the role of finite sets. A
'finite' set in B-recursion theory should be B-recursive and bounded (call a set
M=Lu bounded ifr McL, for some ?<Ê). Thus we consider

C::{QcS(Lp)lQ is recursively invariant and every element of Q is

B -recursive and bounded).

The union of any number of elements of C is again an element of C. Therefore C
has a largest element which we call L This largest element is the most interesting
one from the mathematical point of view. More important: I is distinguished from
all the other elements of C through its coherence with the notion of a B-
recursively enumerable set. We can make this point more precise after Theorem
1.11, where we have a perspicuous characterization of I at hand. It is convenient
to prove some other fundamental facts first.

Definition 1.4. A subset of Lu is called i-finife ('invariantly finite') iff it is an

element of l-the largest recursively invariant class of B-recursive bounded
subsets of Lu.

Sometimes we write iu-finite instead of i-finite in order to stress the dependence
upon B. Observe that for Ê : a¡ the i-finite sets are exactly the finite sets and for
F:o¿ (a admissible) the i-finite sets are exactly the ø-finite sets. Thus ordinary
recursion theory and a-recursion theory are special cases of recursively invariant
B-recursion theory.

Small greek letters will always denote ordinals in the following.

Definition 1.5. (a) B*::¡r,ô<B (there is a B-recursive function which maps p
one-one into 6). B* is called Ihe Zr-projection of B.

(b) o1 cf p:: É¿ô<B (there is a B-recursive function which maps ô cofinally
into Ê). o1. cf p is called the recursioe cofinality of B.

(c) An ordinal r<B is called a B-cardinal ifr

Lu F[r3 ô < y ff (f maps ? one-one into ô)].

(d) B -card(x) : : ¡i,ô (there is some / e Lu which maps r one-one into ô) for any
xeLu. B-card(x) is called the B-cardinality of x.

Observe that Bx and ø1 cf B are always B-cardinals. B is admissible iff
olclp:p. A Skolem hull argument as in the proof of the following lemma
shows that there is always a largest B-cardinal if B is inadmissible [9]. This implies
that B*<B for inadmissible B. It is easy to see that Ê-card(x) is a well-defined
ordinal less than p for every x e Lp.

The following lemma is well known. Its proof is a refinement of a standard
proof of GCH in L (see 13,4]). 'LFGCH'follows from the lemma as a special
case (take þ:*).
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Lemma 1.6 (reflection principle). Assume that p is a B-cardinal and p<B*.
Further assume that xeLu and x=Lõ for some õ<p. Then xe Lp.

Proof. Assume ô > <'r (otherwise trivial) . Let" h be a 11 Skolem function lor Lu

without parameters (see [a]. Define the set D as the closure of La*rU{x} under

the pairing function u, 'D ---> {u, o}. Define Y: : hlo x Dl. Then D c Y( >, Lp and

the transitive collapse of Y is some L, with a limit ordinal f < F according to

Devlin [a]. call the collapsing function z¡. Since x : ¡(x) e L, it is enough to show

that "y <p. h f <,rxD is -X1 definable over Lu with parameters from La*rU{x}.
(h f r,.¡xD)-1 is in general not a function. Therefore we apply the canonical -I,
uniformization procedure (see [4]) and get a one-one function f q(h l<,rxD)-1
with domf:Y. Furthermore / is definable over Lu (and over Y) by some -It
formula r/r with parameters from L6*1U{x}. D is transitive and therefore the same

formula ry' defines over L", a function / which maps L-, one-one into D where

i@@)): n(f @Ð. This implies ^y < B since one can map D B-recursively one-one

into ô and according to oul assumption we have ô<B*.Therefore we know that

f eLu and there is an other element of Lu which maps D one-one into ô. Since p

is a p-cardinal this implies 7<p. n

Corollary 1.7. Assume that xeLu and xçP/".Then there is ø 6<B* ønd a

function f eLu which maps õ one-one onto x.

Proof. / is the function which enumerates f in order. For admissible B it is

obvious that /e Lu. Otherwise we know that p*<B and we show inductively that

f I o e Lu* lor every û <ô. For limit ordinals o we use in this induction the

preceding Lemma L.6. tr

Remark 1.8. Without the assumption p<É* in Lemma 1.6 one comes into

diffculties in the proof of Lemma 1.6 in the case that B is not a limit of limit
ordinals. If one works with Jensen's J-hierarchy one can use at this point Jensen's

uniformization theorem (see [17]). We can avoid here all complicated machinery

because only the following two facts are needed (they are derived in the proof of

Theorem 1.11):
(a) for every i-finite set x € Lu there is some / e Lu which maps x one-one onto

some ^/ <o1 cf B
(b) if xelu is not i-finite, then there is some /elu which maps olcf B

one-one into x.

Lemma 1.9. Assume AcLu is B-r.e. Then there is an ordinal 6<B and a

B-recursirse function f which maps õ one-one onto A. We can always choose

ô <max(B*, ol cf B).

ProoI. According to Devlin [4] there exists a B-recursive function which maps p

onto Lu. One can apply .Ðr-uniformization to the inverse of this function and thus
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get a P-recursive function which maps Lß one-one into B. Therefore we can

assume that the given B-r.e. set A is a subset of B*.
Fix a.Ðrl-u definition e 01 A and a B-recursive cofinal continuous increasing

function q:olcf ß-þ.One can define a B-recursive function h:olcf 9-Lp
such that h(v) is a function which maps some 6^,<B* one-one onto

{r I Lot-,*, F [9(x)] nrI,o,"r F [p(x)]]

for every "y<c-7cf É (h(v) exists by Corollary 1.'7). h is easy to define a

B-recursive function g which maps some ô<max(px,o1 cfÉ) one-one onto

U {{r} x 6" I y < o1 cf Ê} (use Lemma 1.6 if o1 cf B < P*). We get the wanted
function f by combining g and h. tr

Corollary l.l'D. There exists a B-recursiue function whích maps max(B*, crI cf B)
one-one onto B(see l9l) and there exists a B-recursiue functíon which maps B
one-one onto Lu.

Proof. By Lemma 1.9 there exists a B-recursive function which maps some
ô <max(B*, ol cf B) one-one onto B (take A': 0 in the lemma). By definition of

B* and ol cf B we have õ> P* and ô > o1. cÎ B. Therefore ô : max(É*, ol cf ß).
For the second part of the corollary we take A:: Lu in Lemma 1.9. As before

,we get a p-recursive function which maps max(Bx, ol cf p) one-one onto Lu. We
combine this function with the preceding one in order to get a B-recursive
function which maps B one-one onto Lu. !

Theorem 1.11. The set I of i-finite subsefs of Lu is a B-recursioe subset of Lu. One

has for euery xeLu:

x is i-finiteë p-card(x) <oI cf p

<à3 f e Lp 3 ô <o\ cf ß (f maps x one-one onto õ)

Proof. Take an i-finite set x. Since x is p-r.e. there exists by Lemma 1.9 an

ordinal ô<B and a B-recursive function f which maps ô one-one onto .x.

Assume for a contradiction that ô>-o1cfp. Define then Í:: flolcfp]. Fix a
B-recursive cofinal increasing function q: o1. cf ß - I such that i ì qloT cf Pl: ø.
Define a B-recursive permutation h of Lu as follows:

( qff -'(z)) ir z e i.,
I

h{z)::jl@ 'Qt\ if zeqlol cf Bl.

[z otherwise.

Í is B-recursive (since x is B-recursive) and qlotcfB] is B-recursive (since q is
increasing and cofinal). Thus h is B-recursive. h(x) is unbounded and therefore
not an element of L This is a contradiction to the recursive invariance of L

Since ô lolcf p it is clear that f eLp.
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Further one verifies easily that {xeLu I B-card(x)<ø1cf B} is recursively
invariant. Thus it is a subset of I by the definition of L This finishes the proof of
the claimed equalities.

The set {xeLu | É-card(x) <o1. cl p} is obviously B-r.e. The set S':{x e

Lu la f e Lu (f maps oI cÎ p one-one into x)Ì is as well p -r.e. Therefore we know
that l is B-recursive as soon as we have shown that S:Lß-L

We have SsLu-l since o1ct B is a B-cardinal. In order to show Lu IcS
we take some x e Lp- L We can assume without loss of generality that x is subset

of a p-cardinal p because there is some ge Lu which maps x one-one into
p-card(x). Let f :oI cf B -+ x be the B-recursive function which enumerates the
first ø1 cf B elements of x in order. We want to show that /e Lu. For oL cf B -,
this is immediate since / | 7 is finite and therefore an element of Ç for every

l <01cf B. For o1. cf B > c,l \ile know that B is a limit of limit ordinals. Therefore
we can drop the assumption p<p* in Lemma 1.6. (Prove Lemma 1.6 as follows
for these B: Take some limit ordinal À such that Lu*rU{x}cL^. Consider the

Skolem hull in L^, not in Lu.) Thus we get that llleLo for every y<oLcf B.
This implies that we can define / over some Ç with ø < B. n

We can now explain the announced coherence between the notion of i-
finiteness and the notion of a B-recursively enumerable set. In recursion theory
one usually considers the 'universe' as a potential infinity which is in a certain
sense the limit of the finite world below. Likewise one expects, that a RE set can

be approximated from below by taking into consideration a larger and larger
'finite' number of steps in the associated enumeration procedure. For generalized

recursive functions one can formulate this equivalently as the requirement, that
every converging computation comes to an end aftgr performing a 'finite' number
of steps in the computation procedure.

It turns out that the way of counting steps in the earlier described enumeration
procedure was a bit awkward. Consider therefore the following more economical
way of generating Lu, which does not contain so many superfluous substeps. Fix
some B-recursive cofinal strictly increasing function q'.o1, cÎ ß - ß. We can

assume without loss of generality, that there is a -IrLu formula 9 with the
property that for every ^y<oLcf ß q(y) is the minimal ordinal o such that
L-Èç(y). Then generate Lu in olcf B many steps as follows. Start to build the

constructible hierarchy until one reaches a level ô such that L6þç(0).Call this
ordinal ô6. Continue to build the L-hierarchy until one comes to the first ordinal ô

such that LuÞ9(1). Call this ordinal ôt. Etc. In this way we construct the
increasing sequence of sets (L, ly<ø1cf B). Since ôr:q(y) for every ^y(
ol cf B we have fhat Lu is the union of these sets.

The described way of generating Lu induces a 'quick' enumeration procedure
for any B-r.e. set A with IILB definition f: Generate successively the sets

Lo6¡,. . ., Lq(Ð,. . . (y < oI cf p). Enumerate at every step ? those z into A which
satisfy Lo<^,tÞ,!(z) and which have not already been enumerated before.
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There is a certain arbitrariness concerning counting steps. But there is always a

most economical way of counting steps such that the associated Kleene T-
predicate "z is enumerated at step ? of the enumeration procedure ¿" is still
B-recursive. In this sense o1 cf B is the minimal number of steps which is needed

for the enumeration of an arbitrary B-r.e. set. The,ordinal p does not have a

similar significance concerning the counting of steps. One can always divide qne

mechanical step into many mechanical substeps.

According to Theorem L. 11 every ordinal y < ol cf p is an i-finite set. Further-
more I is the only recursively invariant class of B-recursive bounded subsets of Lu

which contains all these ordinals. Thus we see that I is the only class of
p-recursive bounded subsets of Ls, which is recursively invariant and consistent

with the notion of a B-r.e. set.

We show in the following chapters that many other independent approaches to
'finite' lead to the same result. We can see immediately the equivalence of one
approach that comes from the theory of admissible sets. Lu satisfies all axioms for
an admissible set except possibly Áo-collection (we take the axiom system KP as

in the book of Barwise [1]). Áo-collection requires that for every a e Lu and every
Áo formula 9 in which b does not occur free

LuÈV xealyq(x,y)-+3bV xeaA ye bp(x,y).

It is tempting to call in this situation those elements ø of our domain 'finite' which
satisfy the collection axiom for all Áo formulae 9 (or equivalently for all -Ð1

formulae g).
It is not selfevident that the collection of these 'finite' sets is 'recursive' since

the definition involves several unbounded quantifiers. But it follows from the

arguments in the proof of Theorem 1.11 that these'finite'sets coincide with the
i-finite sets for every Lu.

2. T\e adrnissible collapse with urelements

First we derive some basic properties of the i-finite sets.

Theorem 2.1. (a) If K is i-finite and f ís a partial B-recursiue function with
K c dom f, then /[I(] is i-finite.

(b) Euery B-rëcursiue subset of an i-finite set is i-finite.

k) If K is i-finite and f:K-Lp is a B-recursiue functíon with f(x) i-finite for
euery xeK, then U {f(x) lxe K} is as well i-finite.

(d) Assume that an i-finite s¿f K is subset of a B-r.e. set W. If f is any

B-recursioe enumeration of W (i.e. f :o1 cf F-Lp is a B-recursioe function such

that f(y)çf(ô) fo, t<õ and W: U rangef), then there is some step of the

enumeration where all elements of K haue been enumerated (i.e.3y<olcf B
lKc f(v))).
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In fact a P-r.e. set is i-frnite if and only if ít has this property.

(e) A set K c Lp is i-finíte if and only if f or euery partiøl B-recursiue function g

there is a partial B-recursiue function h such that for all xeLu

h(r): 
{å

i/VyeK(g(x,y):1),
ifJyeK(g(x,y):0).

Proof. (a) Take g e Lu which maps some ô < oL cf B one-one onto K and use the

definition of ø1 cf B (and Theorem 1.11).
(b) Show first that the B-recursive subset is an element of Lu and then apply

Theorem 1.11.
(d) It is obvious that every i-finite set K has this property. For the converse

assume that K is any B-r.e. set with this property. Consider a p-recursive

enumeration / of K. We get then K : f(y) for some "/ < û1 cf B. Thus K e Lu and if K
would not be i-finite we could use a one-one map ge Lu from olcf B into K in
order to construct an enumeration of K which does not stop before of cf B.

(e) Define for an i-finite set K

h(x): i:ëa o < P L-F[(V y e K (g(x, y): 1)n i : 1)

v (f y e K (g(x, y):0) n, : 0)1.

Then h is partial B-recursive for every partial B-recursive g. On the other hand if
KeLu is any set with the property in (e) we get immediately that K is

p-recursive: consider for this

f I if xlY,
s(x, r): lo if x: Y.

Then choose a B-recursive function f which maps some ô<p one-one onto K
(Lemma 1.9). Assume that ô >o1.cf. B (otherwise the proof is finished). Fix some

.I1Lu formula r/(x) such that {xeLu lLuFr!(x)} is not Il1Lu.Let q:olcf B---> B

be B-recursive and cofinal. Define g(x, y) as follows for y e K:

g is partial B-recursive and the associated B-recursive function h is the charac-

teristic function of {x e LBILBF.I(x)}. This contradiction shows that ô <o1cf B.

(c) One can see easily that B-r.e. set U {/(x) | x e If} is i-finite according to the
criterion in (d). ¡

We write in the following U for the set Lu-I.U will be the collection of
urelements in the admissible set 2[u.

We assume that the reader is familiar with the syntactical framework for the
discussion of sets with urelements as it is presented e.g. in the book of Barwise [1]



36 W. Maass

(starting on p. 9). The structure of the urelements is described in L, a first order
language with equality. In our case L contains no constant symbol except
equality. The structures for L will be of the form (U, : I Ux U). We write
instead simply U because the equality symbol is always interpreted as the usual
equality relation in the following. Sets with urelements are discussed in an
extended language L*. In our case L* is a single sorted first order language like L
with three additional predicate symbols for I, ë and T.

We consider in the following the structure

2fu:: (U; L ¿,7>

for the language L*. ,f is here again the collection of i-finite sets in Lu and
ê::e I LexI. T is the canonical B-recursive truth predicate for AoLu formulas in
Lu (see e.g. Devlin [4, Lemma 8.4]).

As in the book of Barwise we use the letters x,y,z for variables in L*. They
are interpreted as ranging over [.I U I: Lp.

Lemma 2.2. The sef {(xr, ...,xn)eLþl2IuFe(xr,..., x")} is B-recursiue for euery
A6 formula e(xy . . . , xn) with parameters from Lu.

Proof. Induction on the length of p.
(a) <p is an atomic formula.
We use here that the predicates I, é, T are p-recursive.
(b)

e(xt,. . ., xn)=Y xíxt ú(x, xr,. . ., xn),

M::{(x, xr...,x.)eLþ*1 | ?Iu Frl(x, xr,. . ., x^)}

is B-recursive by the induction hypothesis. We have for any (xr,... ,x.)eLþ:
LluÈ g(xr,. . ., xn)€xre Uv(xleInV xex, ((x, xb..., x^)eM)).

This shows immediately that {(x., . . .,xn) l2[u Fg(xr,. . ., r^)] is IIrLu.In order to
show that it is tllp we observe that

x,e lnV xe xr((x,xt,...,x^)eM)e
xre Ia3 o<9(xteL-nL- FVxe xrú(x,rr,...,x"))

where $ is a trLu definition of M.
(c) The other cases are analogous respectively trivial. tl

Theorem 2.3. 2Iß is an admissible set with urelements. We haue for eDery set

McLpi

M 21LBëM >,12Iß and M Ar LpêM A1Wß.

Proof. We show first that 2Iu satisfies all axioms of KPU, the theory of admissible
sets with urelements (see [1]).
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For any K,HeI we have in ?Iu that

Vx(xéK<>xëH) ---> K: H

since Lu is transitive (extensionality).

The axiom of foundation is reduced to the corresponding axiom in the universe.

The pairing axiom is trivial.
For the union axiom we consider a set K e.[. In order to prove that there is

some ÉI€ I such that VyêK Vxéy (xéH) \¡r'e observe that the function f : K ---> Lu,

/(x) ,- x 1f xeI,
p otherwise

is B-recursive. Therefore FI:: U {/(x) lxe K} is i-finite according to Theorem
2.1(c).

The Áo separation axiom requires that for any KeI and any Áu2lu formula

ç(x) the set {xe Kl2IuFç(x)} is again i-finite. By Lemma 2.2 the set {xe
LplüB F ç(x)Ì is B-recursive. Therefore the claim follows from Theorem 2.1(b).

Finally we prove the Áo collection axiom. Let I be a A62Iu formula and K an

i-finite set such that for all xe K there is some ye Lu with 2IuF9(x, y). We have

to find an i-finite set H which contains such an y for every x e K.
M::{(x,y)eL7l2Iu F9(x, y)} is ß-recursive. We apply -I1 uniformization in Lu to
M and get a partial B-recursive function /cM with Kcdom f. n,:f[K] is

i-finite by Theorem 2.1(a).
Thus 2[u is a model of KPU. For the rest we consider a AoL, formula ç(x, y).

We show that M::{xeLu lI-uÞ=yç(x, y)} is -Ð1?Iu definable. It js obvious that

x e MeA y e Lua z e Lu (z : I e(x,y)' n T(z)).

The latter can easily be written as a .Ir2Iu formula.
On the other hand it follows immediately from Lemma 2.2 that every -Ð12Ip

definable set is -Ðrl-u definable. ¡

3. Infinitary languages

The notion finite is essential for ordinary logic and its model theory. A standard

example is the compactness theorem: If T is a set of finite sentences such that
every finite set To c T has a model, then T has a model.

Consider the set Lu lor some limit ordinal Ê. We want to 'find out for which
notion of 'finite'in Lu the compactness theorem holds. Let LcLp be a language

as defined in Barwise [1]: L is a set of variables and symbols for relations,
functions and constants together with a function which tells us the 'arity' of
relation and function symbols. We assume always that L is B-recursive.

L,p - L-- is defined as the set of infinitary formulas in the language L which
contain conjunctions and disjunctions of i-finite sets of formulas only. L'u can be

considered as a subset of Lu.
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Theorem 3.1. Assume that ß is a countable limit ordinal. Let T be a 21Lu set of
sentences of Lia. If euery i-finite set TocT has a model, then T has a model.

Proof. We apply the Barwise compactness theorem to the admissible collapse

with urelements 2[u as defined in Section 2. Ltu is the admissible fragment of L--
given by 2fu in the sense of Barwise [1]. By Theorem 2.3 L is Ár2[u since L is

ArLu and T is -Ðr?Ip since T is IrLu. Further the sets in 2fu are exactly the i-finite
sets in Lu. n

As an application of Theorem 3.L one can show that a subset of a countable Lu

is i-finite iff it is absolutely implicitly invariantly definable over Lu (see Section 5).

Theorem 3.2. Assume that P is not admissible. Then the compøctness theorem does

not hold for øny notion of 'finite' in Lu which søflsfies

(a) euery finite subset of Lu is 'finite' and
(b) euery element of Lu of B-cardinality oL cf B is 'finite' and
(c) ersery 'finite' set x is bounded (i.e. xcL, for some y<B).

Proof. Assume that 'finite' satisfies (a), (b) and (c). Fix some B-recursive strictly
increasing cofinal function q: o1 cf ß - ß such that q(0) > of cf B. We consider a

language LcLs which contains contant symbols ï::(1,'y) and er:: (1, q(y)) for
yeol.cf p. Further L contains an additional constant symbol c, a one place
function symbol / and a two place relation symbol: . L is Árlu. Define a set of
sentences in the language L as follows.

( / \ìr:: lvr(V_ x:rv V *:/(r))Ìu
\ \Ycølcfp lcolcfP

{/("y) : q, I t e oL cf B}U{-rc : "y I y e o1 cf B}U

{-=c : q, l y e ø1 cf B}U{Vxyz((x : y n! : z) -- x : z)}.

Every formula in T is a 'finite' element of Lu by (a) and (b). Further T is ArLu
and every bounded Tr=T has a model. T has no model since every interpretation
of c is contradictory. tr

4. An equation calculus and relative recursiveness

Kleene's equation calculus is one of various formal characterizations of the
recursive functions in ordinary recursion theory (see e.g. [35, $1.5]). According to
Kripke l2l] a similar equation calculus can be used in order to define the
a-recursive functions for admissible ordinals a. Kripke adds a rule which allows
to survey in a computation o-finitely many bits of information so far produced.

This rule happens to be superfluous in presence of the other rules in the special

case d:<,¡. Besides the approaches to a-recursion theory via definability and
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model theoretic invariance Kripke's equation calculus offers a way to introduce

d-recursive functions via computations. One usually concentrates on this ap-

proach because computations are considered as the heart of the matter and

because it is a good way to motivate the definition of relative recursiveness in

d-recursion theory. Kripke's approach is discussed extensively in the early papers

on metarecursion and @-recursion theory (see e.g. Kreisel and Sacks [20] or Sacks

1371, a sketch is given in Shore [41]).
The following variation of the equation calculus works for every limit ordinal B.

We keep Kripke's rule which allows to quantify over i-finite sets. We add some

trivial initial functions. These initial functions are computable by the help of the

other rules in the special case where B is admissible. It is convenient to write the

equation calculus in such a way that any element of Lu may occur as argument or

value of a function, not just ordinals. Since we are mainly interested in relative

recursiveness we consider everything relative to a fixed set B c Lp.

A computation has the form as shown in Fig. 1.

Endequation

i - finite branching

Axioms of the form x e B,
xf B,F (x,y) =z where F

is some rudimentary function

Fig. 1

The initial functions in the equation calculus are some rudimentary functions.

Jensen introduced in [17] the notion of a rudimentary function and showed that

every rudimentary function can be written as the composition of nine rudimen-

tary functions Fo, . . . , Fr. Rudimentary functions are maps from the universe of

sets into the universe of sets. Fo, . . . , F. are defined as follows:

Fo(x, y) :: tx, y),

F(x,y)::x-\,
Ft(x, y) i: x X ),
F.(x, y) i: {<u, z, u) | z e x n(u, o) e y},

to(x, y):: {(u, o, zl I z e x n(u, o) e y},

Fr(x,y):: U x,

Fu(x, y) :: dom x,

Fr(x, y):: e 11x2,

F (x, y)::{{ø I k,u)ex}|z e y}.
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Lu is closed under all rudimentary functions. We use the restrictions of the ,fl
to Lu as initial functions in the equation calculus.

Observe that the rudimentary functions are a common background of B-
recursion theory and Normann's set recursion [33] which generalizes recursion in

objects of higher types.

The primitive symbols of the equation calculus are: function letters f, g,h,...;
variables x, \, Z, . . .', set constants r for every x e Lp', function constants

Fo, . . . , Fs (for the initial functions) and c" (for the characteristic function of the
given set B); a bounded existential quantifrer (:l x e l) and the equality symbol : .

Variables and set constants are terms. Further if / is a n-place function letter or
function constant and fr, ...,t,,, f are terms, then /(tr, ...,tn) and (f xe f) f, are

as well terms.
If fl and f2 are terms, then fr : tz is an equation.
The intended meaning of the equation (3 x e y) r(x):0 is: y is i-finite and there

is some xe y such that f(¡):0. (3xe y) r(x):l means: y is i-finite and ¡(¡)-1
for all xe y.

The axioms of the equation calculus are the equations 4(r,y):zfor x,y,ze
Lu such that f(x, !):2, t:0,...,8 and the equations

cr(x)-0 for xe B,

c"(x):1 for xeLu-8.

There are four computation rules:
(R1) substitute a set constant for a variable throughout an equation;
(R2) if we have computed equations t1:t2 and f :x where f contains no

variables but is not just a set constant, then we may substitute one occurrence of f
in f1 : t2by x (we call the equation t1:t2the major premise of this rule);

(R3) r(x):0 for some xe y where y is i-finite F(3xe y) t(x):0;
(Ra) r(x):1for every.xe y where y is i-finite l-(3xe y) r(x):1.
For a set .E of equations define the set SE'B of all equations computable from .E

(and the characteristic function of B) as usual:

Sf;'u contains just the axioms and the equations in -8. For ô > 0 Sf;'B is the

set of all equations wlriclr can be cornputed by (R1), . . , (R4) from premises in

U..u sf,". st'o:: Uu..,, SF'o.

Further define Sl't's SE'ß as the set of all equations which can be computed by

an i-finite computation. In order to be able to say that a computation is i-finite
assume that some coding of equations by elements of Lu is fixed. Consider a

computation as a wellfounded tree where the position of every node is denoted by

a finite sequence of ordinals less than p. The empty sequence is attached to the

equation at the end of the computation.

Theorem a.1. (a) g is partíal B-recursiue if and only if there is a finite set E of

equations such that for all x, Y e Lu

e(x) : y <t g(x) : y e SE'ø(à g(x) : y € Sl'ø.
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(b) Assume B c Lp and g is a partial function Lu ---> Lu. Then there is a finite set

E of equations such that for øIl x, y e Lu

g(x):yêg(x):yeSf'"

if and only if there is a B-r.e. set W such that for all x,yeLu

g(x): y ea i-finite K, H ((x, y, K, H>e WnK c B ¡H c LB - B).

Proof. We prove at first (b). Assume .E is a finite set of equations and / is a

function letter such that for all x, y e Lu

e(x):yef(¡):yeSl'".
The restriction of a rudimentary function to Lu is p-recursive (Jensen [17,
Corollary 1.4(b)l). Therefore the following set is B-r.e.:

W::{(x, y,K,H)la z eLu (z is an i-finite computation of /(¡):y from
equations in E and axioms where

f : {u I the axiom c" (u) : 0 is used in the computation z}
and

n:{u lthe axiom c"(u):1 is used in the computation z})}.

For every i-finite computation z the associated sets K and H are i-finite.
In order to prove the other direction of (b) we assume that the partial function

g is defined by

g(x):y<àf i-finite K,H ((x,y,K,H>e W¡K cB nHcLp-B)

where (x,y,K,H>eWëLpÞ)zq(x,y,z,K,FI) for some Áo formula g.

Assume first that g has the additional property g(x) J )SG)*Ø.
Define auxiliary functions hr,hr, h. as follows:

hr(x, u, z, o, w): U {y I y e u nLuF e(x, y, z, u, w)},

lo t þex.h"(x\: I
t t otherwise,

h.(,): 
{å

if xf Ø,

otherwise

These functions are rudimentary according to Jensen [8].
We define a set E of six equations with function letters hr, . . ., hr, f. The first

three equations are of the form h,(x):"' with a suitable composition of the

^Fo,. . ., .F. on the right side, i :1,2,3.

(4) ho@) -- hzknî)),

(5) hs(1,t,1, y): y,

(6) f (x): hr(ht(hr(x, tL z,'D, w)), h¡((3 y e u) ho(y)),

hr((f y e w) c"(y)), hr(x, u, z, u, w)).
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We show that for every x, y e Lß

e(x):ye/(x):y€Sl'".
For ')' we take ze Lu and i-finite K,HeLu such that LpFe(x,y,z,K,H)

Then we have h1(x, {y}, z, K,II) : y € Sl'". Further

(f ue K) ha@):1e Sf'B and (3ue IÐcs(u):1e Sf'".

Together this imples

f @): hs(hz(y), h,(t), h,(1), y) € S,''".

By the additional assumption about g we have ylØ and therefore f(*):
hs(!,1,1,y).Sf'".By using (5) we get from this /(x):ye Sf,B.

In order to show the other direction we assume that f(x):y€Sf.".We can
trace back the computation of this equation and get a finite sequence of equations
Go, . . . , G" where Go is the endequation f(¡) : y and G, is an axiom or an
equation out of E. In this case it is necessarily eq. (6). For all i < n G, is
computed from G,*, by an application of rule (R1) or (R2). In the case of rule
(R2) Gr+1 is the major premise. Every G, has necessarily the form f(tr):tr. In
course of the computation from G, to Go all the auxiliary function letters and
bounded quantifiers are eleminated by applications of rule (R2). Since the minor
premise of these applications has the form f : z with a closed term f beginning
with a bounded quantifier or a function letter we can trace back the computation
of the minor premise in an analogous way. From this analysis of the computation
one can see by a simple but lengthy combinatorial argument that only 'desired'
equations can occur in the computation. This is shown first for the function
constants Fo,...,F8,c", then for the function letters hr,h", h., then for the
function letters ho, h, and the terms with bounded quantifiers and finally for the
principal function letter /.

It remains to be shown that we can get rid of the additional assumption

S(x)J ) SG)f Ø.If e is any partial function which is defined with the help of
some B-r.e. set W as above we can define the function ã with

e(x)
{g(x)} if g(x) | ,

f otherwise

analogously. I satisfies the additional assumption and is by the preceding there-
fore computable as desired. Since the function xÞU x is rudimentary this holds
then as well for the function g itself. This finishes the proof of (b).

(a) is a special case of (b) where B:Ø. For any finite set E of equations one
has SE'ø: Sf'ø. n

We define now the notions of relative recursiveness for invariant B-recursion
theory which will be studied in the rest of this paper. Analogously as in other
parts of generalized recursion theory there are two possibilities. In order to
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compute a function g from an oracle B one can either allow any computations of

equations g(¡) : y which proceed according to the rules of the equation calculus

(i.e. g(x) : y e St't ) or one can demand in addition that every computation tree is

an element of a previously specified reservoir which does not depend on the

oracle B (e.g. g(x) : y € Sl'"). In the second case one can define the reducibility as

well without reference to the equation calculus according to the previous theorem.

Definition 4.2. Assume A,BcLu.
(a) A is computable from B (A <.-B):(àthere is a finite set E of equations and

a function letter g such that for all x€Lß x^(x):i<àc(x):¡e S"'t (xo is the

characteristic function of A).
(b) A is weakly i-recursive in B (A<*,Il):êthere is a B-r.e. set W such that

for all xeLu

xa(x) : iê:l i-finite Hr, H, ((x, j, Hr, Hr) e W nH1ç B nHr-_ Lß - B).

(c) A is i-recursive in B (A <,B):êthere is a p-r.e. set W such that for all

i-finite K

K c Aêf i-finite Hr, Ht (K 0, Hr, Hr) e W r"Hrc B nHzc Lp - B)

and

KcLø-A<à3i-finite Hr,H, (K 1, Ht,Hr)eW
nII, c B nHtcLp-B)'

At the first glance (*¡ S€emS to be the most interesting reducibility for someone

who wants to admit only computations out of a fixed reservoir. But already for
admissible B this reducibility is not transitive [5]. Nevertheless <*, remains of

technical interest. In order to get a transitive reducibility one consideres instead

<i'
For B : ar all three reducibilies are the same as Turing reducibility. For B : o

(e admissible) <. coincides with {"o, <*, with <*o and <, with <..
In a-recursion theory Kreisel has favored the first reducibility <.. It has for

countable o a nice model theoretic interpretation which we will extend in Section

5 to all countable Ê. The choice of computation rules is always to some extent

arbitrary. Therefore it is satisfying to find a model theoretic interpretation which

allows to state that the computation rules are in a certain sense complete.

Technical interest in s" comes from the fact that the solution of Post's problem

for <.-requires extra work compared with the solution for {i.
Of particular interest are those oracles B for which both reducibilities coincide

because everything wbich is computable from B is already computable from B
with an i-finite computation. This leads to the following definition.

Definition 4.3. B clp is i-absolute if for every finite set.E of equations SEB:
sf'".
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We show in Section 7 that nontrivial i-absolute p-r.e. sets exist for every B. The
following lemma indicates how a set can be made i-absolute in a priority
construction.

Lemma 4.4. B clp is i-absolute iff for euery relation RcLpxLu wíth domR
í-finite ønd (x, y) e R ê 3 i-finite K, H ((x, y, K, H)e Wn K c B n H c Lp - B) for
some B-r.e. W there is an i-finite function h c R with dom h : dom R.

Proof. Assume B is i-absolute and consider some R cLpxlu as in the claim. It
is obvious from Theorem 4.1(b) that there is a finite set -Er of equations and a
function letter /1 such that for the function g::Rx{1} we have g(x, y):ze
.fr(x,y):zeS?'B. Let f be a new function symbol and define E::Etl)
{/(x): /r(x, y)}. We write K for the i-finite domain of R. For every x e K there is
some y such that (x, y)e R and therefore /r(t,y):1e SE,'B cSEB. Thus by (R4)
(3xe K) f(x):le SE'". At this point we use the i-absoluteness of B and get
(3xeK) f(x):1e S,"'u.

We analyze now this i-finite computation and show that one can read ofi from it
an i-finite uniformization function h c R with dom h : dom R. We go backwards

in the i-finite computation of (3 x e K) f(x) :1 in the same way as in the proof of
Theorem 4.1. Since E contains no equation of the form (!l xe t)f(x):s the
bounded quantifier (3xeK) came in through an application of (R3) or (R4).

Since we have the term 1 on the right side of the end equation this was actually an

application of (R4). The premises of this application were the equations f(z):t
for zeK.

We study now the computation of f(z):1e Sf'B for some zeK. fG):1can
only be derived from f (x) : f t(x, y) e .E by (R2). The function letter /r can only be

eliminated if it has constant arguments. Therefore the variables x and y in

/(x) : f rG, y) are first substituted by set constants z and o. The minor premise of
the application of (R2) where /, is eliminated is then the equation f1Q,o):1.
Because of the structure of .8, we have for this u /r(2, r:):1e Sf"t and therefore
(z,u)eR by the choice of f ,,8t.

Thus from the i-finite computation of (3 x e IO f (x) :1 we can assign to every
zeK the u as above with (z,r-r)e R by an i-finite function h.

For the other direction one shows inductively that every equation in St'B is

already in Sf'". tr

Corollary 4.5. Assume B is i-absolute. Then we haue for all sets AcLB

A <.-B<)A <iB<àA <*iB.

Proof. One shows A <*i B ) A <t B by using the characterization of i-absolute in
the preceding lemma.

A <. B ) A <, B follows from the definition of i-absolute. The rest is

trivial. n
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Remark 4.6. i-absoluteness is a property of i-degrees, not just of single sets. If B
is i-absolute and A<,8, then A is as well i-absolute (this follows immediately
from Lemma 4.4).

In a-recursion theory a similar notion was introduced by Kreisel. He called a
set Bc Lu subgeneric if SE'B:lJr.or"uSÏ't for every finite set -E of equations,
see Sacks [36]. There are some problems with this notion because it seems to have

no equivalent definition without reference to the equation calculus (in analogy of
Lemma 4.4). Thus e.g. if one wants to prove that B subgeneric together with
A <,8 implies that A is subgeneric one is drawn into painful combinatorial
considerations.

Because of these problems one considers in a-recursion theory instead the
notion of hyperregularity. This notion plays a key role in recent developments of
the theory (see e.g. [30] and [31]).

A set B c Lp is called hyperregular if for every function / such that dom / is

i-finite and

f @): y <+3 i-finite Hr, H., ((x, y,Hr, Hr)eW nHtc B nHzc Lp- B)

for some B-r.e. W there is some ô<P with Rgf qLu.
It is obvious that if B is hyperregular and A <tB, then A is hyperregular as

well.

Lemma 4.7. For euery p and euery B c Lp we haue B i-absolute ) B subgeneric )
B hyperregular.

Proof. The first implication is obvious. For the second implication assume that B
is not hyperregular and construct from the corresponding witness function a

system of equations -E such that some equation in SE'B - LJ 
".or 

r u SÏ'"
exists. !

We show now that in a-recursion theory all these notions coincide for those

sets which one usually studies.

Lernma 4.8. Assunte B is admissible and BcLp is |-r.e. or regular (i.e.

V ô <p (B nLu e LB)). Then B i-absoluteêB subgenericëB hyperregular.

Proof. Assume B is hyperregular. For B B-r.e. and p admissible this implies that
B is regular. Thus we can assume that B is in addition regular. We show that the
criterion for i-absolute in Lemma 4.4 is satisfied. Assume W is p-r.e. and

R c Lp x Lu is a relation with dom R i-finite and

(x, y)e R<à3 i-finite K, H ((x, y, K, H)eW¡K c B nH c Lp - B).

Since B is regular and every initial segment of p is i-finite for admissible B we can
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define a function FcR with domF:domR and

F(x) : y e3 i-finite K, H ((x, y, K, H) e iV ¡ K c B n H c Lp - B)

for some B-r.e. iV. Since B is hyperregular and regular this function F is in fact
i-finite. n

We think that the study of i-absolute and hyperregular p-r.e. i-degrees is one of
the most promising projects in invariant B-recursion theory. These two concepts
do not coincide as the following example shows.

We define É::lJ-*Nr in L. Then olcf B:f{1 and É*:N.. Fix some p-
recursive function P which maps Lu one-one onto Bx. Then the following p-r.e.
set B is hyperregular but not i-absolute: B::{ô<N- lthere is some o and some
ne <,.¡ such that ø<l{,<ô(l{^*, and P 1(o) is a function h;iro---rN- with
Vm(N- <h(m) (N-*r) and ô<h(n)).

B is hyperregular because B has cofinality R, in L (under V: L B is in addition
subgeneric). In order to see that B is not i-absolute consider the following relation

Rc<,¡xLu: (n, y)e R:ên€@^l{n{y(l{^a1 AyÉB.

Obviously R can be defined in the required form and dom R : <,r. Assume h c R
is i-finite and domh:or. Consider o::P(h) and r¿e a¡ such tfihat o(N^. Then
h(n)eB by the definition of B and h(n)ÉB because hcR, a contradiction.

It is quite natural that i-absoluteness and subgenericity (respecively hyperregu-
larity) are not the same, although the assumption of admissibility obscures the
difference. The former requires that everything can be computed from B with an
i-finite computation, the latter requires only that everything can be computed
from B with i-finite height.

5. Model theoretic invariance and infinitary logic

A sceptical mathematician might object that infinite computations are of no
interest since the characteric feature of a computation is its finiteness. Further
doubts may arise if one steps out into the universe of sets (Mostowski asked -perhaps rhetorically - "'What is recursive in the operation of forming the union
of sets?" (see [2, p. 14]).Of course a computation may behave-as we have
learned - in its essential features like a finite object, although it is actually
infinite. But what one considers as the essential features of finiteness may depend
e.g. on the respective mathematical background. Therefore it is satisfactory that
one can characÍerize large parts of generalized recursion theory beyond all these
troublesome arguments in terms of absoluteness - or 'model theoretic invariance'
as this effect was called by Kreisel [19].

Gödel [13] considers those sets Mc<'¡ which are invariantly definable in first
order arithmetic Ar. This means that some formula 9 in the language of A, exists
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such that in order to find out whether some natural number n belong to M or not
we may take any model 2[ of A, and see whether ?IFç(n) holds or not-the
answer will not depend on 2[. Of course one can express this as well proof
theoretically:

M :{ne<,r 
I arFg(n)} and a-M :{neal Arl-r<p(n)}.

The sets M which are invariantly definable in this sense are exactly the recursive
sets.

Kreisel noticed that one can characterize the other basic notions of recursion
theory in a similar way: the recursively enumerable sets are the semi invariantly
deflnable sets and the finite sets are the absolutely invariantly definable sets (see

the generalizations in Definition 5.1). Further he suggested to consider as well
invariant definability with respect to larger classes of definitionS, €.g. implicit
definitions which may contain an existential quantifier ranging over subsets of the
model. In the unrelativized case both explict and implicit definitions lead to the
same class of invariantly definable sets. Relative to a fixed set BcLp in general
only implict definitions lead to a characterization of 'computable from B'. Kunen

l22l gave a definition of implicitly invariantly definable' which works for count-
able admissible sets. He did not include the case where an additional predicate B
may destroy admissibility (i.e. B is non-hyperregular). But it is well known that
for countable admissible a 'implicitly invariantly definable from B over Lo' is
equivalent to 'a-computable from B' (in particular stressed by Kreisel). A proof
seems not to be available. We sketch a proof of the related Theorem 5.4 in order
to make sure that the argument works as well in our situation (in the light of
Section 2 we consider essentially admissible sets with urelements). On the \¡vay we
show that for countable p 'computable from B'can as well be defined in terms of
provability in infinitary logic (Theorem 5.4 (3)). In fact 'i-computable from B' can
be characterized analogously (Theorem 5.5).

Finally we show that the principle of recursive invariance, which lead to the
definition of i-finite in the first section, can be derived from the more general
principle of model theoretic invariance.

Definition 5.1. Assume that R, Sr,. . . , S¡ âre subsets of Lu. Let 9 be a (finite)
first order formula which may contain besides :,ã,ñ,5r,...,Su additional
predicate symbols ir,...,i^. I defines R invariantly implicitly from Sr,. . ., Sr
over Lu:(åthere are Tb . . . , T^ c LÊ such that

(Lp, e I LçxLp, R, Sr,..., Sk, Tr,...,T^)Èç
and for any structure (A',8',R',Si,...,5L,7,r,,...,Tk) in which g holds and
which satisfies (a), (b), (c) below we have R : R't-ì Lp; where

(a) (Lp,e f Lu xLp) is a Ao-elementary substructure of (A',8');
(b) si l\Lp:s1,.. ., S[ñLp : S¡;
(c) if xe Lu is i-finite and yB'x for some je A', then ye Lu.
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We say that R is invariantly implicitly definable (i.i.d.) from 51, . . . , 56 over Lu

if there is a formula 9 which defines R invariantly implicitly from Sr,..., Sr.

The relations 'R is semi invariantly implicitly definable G.i.i.d.) from Sr,. .., Su

over Lu' and 'R is absolutely invariantly implicitly definable (a.i.i.d.) from
Sr, . . ., S¡ over L{ are defined analogously with'R c R'fìLu' respectively

'R : R" instead of 'R : R'l-ì LÊ'.
It is obvious that for admissible P this is equivalent to Kunen's definition [22]

(see also Barwise [1]).
Observe that point (a) in the definition says essentially that in our model

theoretic analysis of Lu we should consider a Áo-formula over Lu as an atomic

formula (an atomic formula is preserved in any model extension).

In the following we will not mention those fixed sets S in the list 51, . . . , Sk

which contain just a single element x. This means essentially that we consider

boldface definitions g where certain elements of Lu may be used as parameters

(include the formula Vy Vz ((S(yl" S(z))--- I : z) in g in order to make sure that
S' : {x}).

It is easy to see that R is i.i.d. from Sr,..., Sk over Lu iff R and Lr-R are

s.i.i.d. from Sr, . . . , S¿ over Lu. The proof of this fact shows already why it is

advisable to allow additional predicates Tb. ..,T^ in the implicit definition.
Further for countable p a subset of Lu is a.i.i.d. over Lu iff it is i-finite. This is

an application of compactness for languages with i-finite formulas (Theorem 3.1).

The following two lemmata are needed for the proof of Theorem 5.4.

Lemm¡ 5.2. SE'B is s.i.i.d. from B ouer Lu for ersery finite set of equations E and
eoery B c Lu.

Proof. Consider predicates Pr, . . ., P6 which are defined as follows.
Pr(x):êx is an equation of the form {(u,u):w which is true in the standard

interpretation.
Pr(x, y, z):€)x is the equation cø(y): z.

Pu(x, y):(à¡ is an equation of the form (Aue z) r(u):l where z is i-finite and

y is the set {r(u):Llue zl.
Pr, P¿, P, are analogous predicates for (R1), (R2), (R3).

For every ie{l,...,6} we frx a ZtLu definition 3wg¡ of P' with some Áo

formula g,. The following formula defines SE'B semi invariantly implicitly from B
over Lu:

9:=Vx(3w e{w, x)-' É(x))

nVxyz((3w ez(w,x, y, z)nB(y)n z:0)- ñ(x))nVx(xéE-+ n(r))
n . . . nVxy((3w e6(w, x, y)nVué yñ(o)) -- ls(x)). tr

In the following we consider the set L,u of i-finite formulas of a AtLu language

L as defined in Section 3. We take the axioms and rules for infinitary logic as in
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Barwise [1, chapter III], but restricted to i-finite formulas. The symbol F will
always refer to this notion of proof.

Lemma 5.3. There is a finite set E oT equations in the equation calculus for

B-recursion theory, which contains function letters h and f, such that for any set of

sentences T c L¡pi

| € L;pn TF y ef(y) : 0 € SEUth(r):o I xerÌ'Ø

Proof. One has to translate the axioms and rules of infinitary logic into equations

in E. This has to be done carefully so that the direction'('can be proved as

well. In view of the complexity of E it is advisable to avoid a purely syntactical

proof of this direction. Therefore twe proceed as follows. We define two equation

systems.Er and E, such that E:E1 U Er.E, consists of equations about f,, h and

several auxiliary function letters hr,..., h. We make sure that the function

letters f,h,hr,...,hn can be interpreted in such a way by total functions

f',h',h\,...,h'^ from Lu into Lp, that all equations in -Er are satisfied in the

interpretation,

/'(y):
0 if y e L,u r',Tl y,

1 otherwise,

and all the hi, . . . , h'" are p-recursive.

The equation system E2 contains only the defining equations for h\,...'h;
according to Theorem 4.1(a) such that

hi?):yeh¡(x):ye SE'ø.

One sees from the proof of Theorent 4.1 that further auxiliary function letters will

occur in .8, which cannot be interpreted by (partial or total) functions in such a

way that all equations in E2 are satisfied.

Consider then a computation of /(y):0 from equations in

EU{h(x):01"e T}. At every point of the computation where some equation

h¡(u):o is used (necessarily as minor premise in (R2) because of the structure of

the equations in Er), we cut ofl the computation of h¡(u):o. Necessarily only

equations from E, are used in this computation of h¡(u):o due to the structure

of the equations in -81 and -82. Therefore we know that hi@): u. This implies that

all the equations in the remaining torso of the computation of f (y) :0 are satisfied

in the interpretation with f',h',h'r,...,h'". In particular f'(y):0 holds' This

implies that y €LiBATFy because of the definition of /'.
We describe some of the equations in ,8,. For the translation of the rule

{rþ - ç¡ | j e K}F ,lt- .\.ci (K is i-finite),
leK
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\¡ve use two auxiliary function letters hr, ht.We intend that

{,lt-ç¡ljeI(}
hi@)

hr(.) : {i
if x :0,
otherwise,

!-+x ifx,yeLiu,
0 otherwise,

xÌ

if x is the formula,

ú - A I, and K is i-finite,
j €Ií

otherwise,
and

. fr=y if x,yeci',
h\(x- v):{

[o otherwise.

Then the following equation in -Er takes care of the infinitary rule:

f (x) : h2(1, (A u e hr@)) hr(|, f (u))).

It is more difficult to translate the rule e + ú,9 F ry' because this rule cannot be

reversed. The function letter hr will take care of this problem. We further use

ho, hr, h6 where

. lx+y ifx.year,
hLG, v):1(0 otherwise,

hL(y, x):

We add to E, the equations

f (x): h2(hs(h4ff(hu(y, x)), /(v)))), hr(x, y, hu(y, x)))

and

h2(0, hr(x, y, z)) :0.

We define

, ., ft if f'(x):on(/'(Y):lvf'(z):t),n\\x, y, z ):1(0 otherwise.

Observe that h\ is not p-recursive. Deviating from the treatment of the other h;

we add no equation with h, to Et. The rest is analogous. n

Theorem 5.4. Assume that p is a countable limit ordinal. Then for A, B c Lu the

following three relations are equiualent:
(1) A ts computable from B;
(2) A is i.i.d. from B;
(3) for some ArL, Ianguage L c Ls, which contaíns relation symbols Ã, É and

constant symbols x for euery xe Lp, and some ZtLu set T of sentences in Lru the



Recursiuely im¡aríant B -recursion theory 51

followingholds for euery yeLu (define ¿"::{É(¡)lxe B}U{-rÉ(r)lxÉrÐ
ye A (à TUABFÁþ)

and
y{AeTUAu FrÁþ).

Prqof. (1))(2): It is enough to show that A and Lu-A are s.i.i.d. from B.
Assume that f, E are such that

yeAe/(y):0eSE'B
and

yÉAef$):1eSE'B.

In Lemma 5.2 it was shown that SE'B is s.i.i.d. from B. Then {ye Lu l/$):0e
SË'B) is as well s.i.i.d. from B (use an auxiliary predicate T for SE'B in the implict
definition). Analogous for yf A.

(2))(3): Assume that I defines A invariantly implicitly from B over Lu

according to Definition 5.1. Consider a language L which contains :, ê and all
the other relation symbols in 9 (but we write Á instead of .É and É instead of Sr).

Further L contains constant symbols x for x e Lu.

f::{ú l,/ is a Ao sentence with symbols :, ã and constant symbols x
and LuFrl)U{Vx(x €}+ V,.y x : u)l y e Lp is i-finite}U{e}.

Assume that ye A. Every model of TU A" can be construed as a structure
2I':(A',8,R',...) in which 9 holds and which satisfies (a),(b),(c) in the
definition of i.i.d. Since g defines A invariantly implicitly from B we have
R'nLp:4. Therefore 2t'FÁþ). We have thus shown that TUÁ" ÞÁ(y;. The
Completeness theorem for infinitary languages implies TUABf Ã0) (see [1,
Exercise 4.6, p. 95] for the version which we need here). Observe that this is the
only point where we use that B is countable. On the other hand if TUÁB f Á(y),
then ye A because (Lp,€lLßxLß,A,8,...) can be construed as a model for
TUAB (by the first part of the definition of i.i.d.). The proof for ylA is
analogous.

(3)) (1); According to Lemma 5.3 there is a finite set E of equations such that

f (z):Oe 5Eu{h(r):olxerua"}'Ø ç,7 e Lru nT U ABI z.

Extend .E in two steps to .8, and Er. First we add equations such that

f (z) : O e 5E u{h(r):o I x eru a 
"}' 

ó ç2 f (z) : 0 e SE'' B.

Then add a nerw function letter g and equations such that

e0) : oe sE-B <à/(Á0)) : oe sE'È
and

g(y) : 1e sE"'B êf(-1ÁO)) :oe sE'''. ¡
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As a special case we get for countable B: a subset of Lu is B-recursive iff it is
i.i.d. Similar arguments show that p-r.e. is equivalent to s.i.i.d.

We write TFr 9 if there exists an i-finite proof of g from formulas in T.

Theorem 5.5. Assum¿ that B is any límit ordinal. Then for A, B c Lu the following
relqtions are equioalent:

(1) A -=,8;
(2) for some ArLu language LÇLp, which contains relation symbols Ã,É and

constant symbols x for euery x € Lp, and f or some 2 rLu set T of sentences in Lru the

following holds for ebery i-finite set K:

KcA<+TUÁBFtA Á(x)

and

K c Ls- A<pTu ABI-i I rÁ{r).

Proof. Obvious. E

Remark 5.6. (a) Although the i-finite sets coincide with the a.i.i.d. sets from
Definition 5.L one cannot use invariant definability in order to justify the
definition of i-finite sets out of nothing (i-finite sets are used in Definition 5.1).
But the following principle is one of those very few facts which can be derived
for any conceivable notion of invariant definability: The image of an absolutely
invariantly definable set under an invariantly definable function is absolutely
invariantly definable. Therefore there are not many reasonable recursion theories
on Lu which can be characterized in terms of invariant definability.

In order to derive the principle above one has to explicate the notion of an

inuaríantly definable functíon /. One expects the following: If x is an element of
the 'hard core' C (in our case Lp) of a collection of structures ÐJt, then the value

/(x) can be determined by inspecting the invariant definition of / over any of the
structures Ð?. If the graph of / (as a subset of Cx C) is an invariantly definable set

it is nevertheless possible that besides (x,/(x)) some pair (x, z) with zf C satisfies

the invariant definition of the graph over a certain 9I. Then it is impossible to
determine the correct value over !J?. Therefore one has to demand in addition
that the invariant definition of the graph of / defines a function over any of the
structures D? in question. This is no restriction for any notion of implicit invariant
definability. If p(R) defines i.i. the graph of / as a set, then q(ñ) 

^Vxyz(ñ.G, y)nñ(x, z)-- y: z) defines / i.i. as a function.
It is then trivial to derive the claimed principle.
(b) Formulas 91 and 92 which define according to Definition 5.1 s.i.i.d. sets

Br.BrcLp such that Bt is not i.i.d. ftom Brand Bt is not i.i.d. from Bt might
look a bit unpleasant. Nevertheless such formulas exist (at least for countable p)
as it is proved in Theorem 7.L in terms of computations. Thus it is the combina-
tion of both aspects which makes the theory interesting.
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6. More models for rxiomatic computation theories

We consider axioms for computation theories which go back to Moschovakis

[32] (he was stimulated by Kleene's schemes for recursion in higher types [18]).
These axioms were extensively studied by Fenstad [7]. We use the definitions of
his survey paper [6].

A set @ of triples (a, o, z) is considered which satisfies certain closure and

uniformity conditions. The intention of (4, o,z)e@ is: {øXø):2, where a codes

some computing device. Further there is a well-founded transitive relation ( on

@. The axioms demand that < behaves like 'is subcomputation of'.
A function f is called @-computable if for some ¿¿:

f(o):zë(a,o,z)e@.
A set is called @-semicomputable if it is the domain of some @-computable

function. A set is called @-finite if one can @-computable quantify over it. A nice

feature of this definition is the possibility to characÍerize those computation

theories which generalize recursion in normal objects of higher types (Spector

theories): these are the computation theories where the whole domain is @-finite.
A computation theory is called p-normal if it allows some kind of stage

comparison. It is called s-normal if for any (a,o,z)e @ the set of 'subcomputa-

tions' {(a', o' , ,) I (e' , (¡' , z') 1(a, o, z)} is @-finite in a uniform way (this is related

to the coherence requirement in Section 1).

Theorem 6.1. Assume that p is a limit ordinal. There is a p-normal and s-normal
computation theory (@,<) such that the @-computable functions are exactly the

B-recursioe functions, the @-semicomputable sets are exactly the p-r.e. sets and the

@-finite sets are exøctly the i-finite sets.

Proof. Straightfbrward. See

Theorem 2.1(e).
the related characterization of i-finite sets in

Remark 6.2. (a) Originally Moschovakis considered instead of a subcomputation
relation < a map from @ into the ordinals, which gives the 'length' of a

computation. Usually both versions can be used. Theorem 6.1 holds in general

only for the refined version with 'subcomputations' due to Fenstad.
(b) The @-finite sets are invariant under @-computable permutations of the

universe for all computation theories.

7. Post's problem

We consider here the notions of relative recursiveness which were defined in
Section 4. We concentrate on i-degrees, which are the equivalence classes with
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respect to the relation <¡. One verifies immediately that for all B there is a

smallest i-degree 0, (the i-degree of the empty set) and a largest B-r.e. i-degree 0i
(the i-degree of an universal p-r.e. set). A set is B-recursive if and only if it is in
the degree 0,. Further 0, <,0í.

Since i-degrees coincide with B-degrees for admissible B, new questions arise
only for inadmissible p. Further for all p the i-degrees coincide with the
2Iu-degrees in the admissible collapse 2fu. Now if p is weakly inadmissible (i.e.

Ê*<o1 clP<p) the admissible collapse has a particularly nice representation
according to 1271. One can write it as an admissible structure (Lor"ru, e, T) where
T is a regular predicate over Ç..ru which preserves the fine structure of lor.ru.
Therefore constructions of a-recursion theory can be extended to the admissible
collapse of a weakly inadmissible B.

The inte¡esting open questions arise in the case where B is strongly inadmissible
(i.e. ol cf B<p*). For these B the i-degrees still coincide with the degrees in the
admissible collapse 2[u. But 2fu is in this case a very fat admissible set, where no
construction of o-recursion theory succeeds (Stoltenberg-Hansen has shown that
these are exactly those p where 2Iu is not resolvable, see [7, Theorem 6.3.14]). In
fact one cannot expect that all results from a-recursion theory can be extended to
all fat admissible sets because Harrington has constructed such a set where 0 and
0' are the only .Ð.-degrees [14].

Thus for strongly inadmissible B the admissible collapse 2fu only supplies 'soft'
results about B like the Barwise compactness theorem in Section 3. Concerning
'hard' results the information flows in the other direction. Although 2Iu may be an
enormously fat admissible set (consider e.g. Ê:|lr+<o) it has still got some
regularity which comes from the fine structure of Lu. Therefore one can in fact
solve Post's problem for these fat admissible sets 2[u according to the following
theorem.

Theorem 7.1. Assume B is any limit ordinal Then there are B-r.e. sets A, B of
incomparable i-degree. We can make A, B in addition i-qbsolute.

Proof. By our previous remarks the solution of Post's problem in a-recursion
theory by Sacks and Simpson [38] covers as well the case where B is weakly
inadmissible. For strongly inadmissible B with Bx p-recursively regular Friedman

[10] has constructed B-r.e. sets A, B which are incomparable w.r.t. to <*u and
therefore as well incomparable w.r.t. <¡ (observe that we don't get this if A, B are
just incomparable w.r.t. <p). In all these cases one can make A, B in addition
i-absolute by adding negative requirements as in the construction below.

We assume now for the rest of the proof that B is strongly inadmissible and that.

B* is not B-recursively regular (i.e. there is a B-recursive function which maps
some ô<B* cofinally into F*). Obviously Ê* is in this case a limit of p-cardinals.
For any ô<B* we write ô* for the next B-cardinal after ô.

For all B-cardinals (<B* we proceed between ( and (* similarly as Friedman
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proceeds between 0 and Bx in the case where B* is B-recursively regular. It just
remains. to be shown that these diflerent segments of the construction do not
interfere with each other in a serious way.

Jensen [17] has shown that the combinatorial principle O holds for all regular
cardinals in L. Friedman [10] has introduced effective versions of O for B-
recursively regular B-cardinals. If B* is not B-recursively regular one can piece

together the O-sequences for the B-recursively regular p-cardinals below B*.
Thus we define the O-sequence (56 lô<B*)eLu by:

^ (ó ifôisap-cardinal,Sa::{
[ 2o n L5, where ô :: p"y > õ(L, F [ô is not cardinal]) otherwise.

Then for every ô<p* the B-cardinality of Su is less or equal to the B-cardinality
of ô.

Let p be an element of Lu. For a B-cardinal p<ß* we define

Cr., i:{ô I p <ô (p+n hr[(ô U{p}) x or] f-ì p* = ô}

where hr is a parameter free .Ir-skolem function for Lu. It is then easy to show
that Ce,e is closed and unbounded in p+. Further if ô e Ç,o and the set has a -I.
definition over Lu with parameter p, then Wñôe Su (see Friedman [10] for
proofs).

Fix a B-recursive function P which maps Lu one-one onto Bx. Further fix a

B-recursive strictly increasing cofinal function q:o1. cf 9 - ß.
The construction of A and B proceeds in ø1 cf B many steps. At every step

y<o1 cf B we consider every stage ô<B* which is not a B-cardinal. At stage

ô<p* we consider all requirements Rfr, Rår, Nâ*, Nl*with e(ô and Xe Su.

The B-cardinality of these requirements equals the B-cardinality of ô. We assume

that for every stage ô a well ordering of the requirements at stage ô has been
assigned in a B-recursive way. If 51, 52 are t'wo requirements, then St has higher
priority than 52 if either S, is a requirement at lower stage than S, or S. and S,
are at the same stage and S, precedes S, in the well ordering of requirements at
that stage.

Rfu tries to prevent that for all x e B*

.x€Bx - A<>f i-finite H ((x,H)eW, 1(e)AFlc p*-B).

Nft tries to make sure that if (P-1(e))6 is a function which maps some
y<ûl cf B one-one onto dom R, where

R ::{(x, y) l3 i-finite H ((x,y,H)eWs,,r",),AH- B*-A)},
then there is an i-finite function h c R with dom h : dom R.

Rf¡ uses X as a guess at Bnô. Nlx uses X as a guess at Al-lô.
Step y, Stage õ: Assume Rf* is the next requirement to be considered,

Lolr,F3y(P(y):e) and nothing has been done for Rf;r at stage ô at a previous
step. Then we check whether there is some pair (x,I/) with ô<x<ô* and 11
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i-finite such that x was not restrained from A for a requirement at stage <ô,
(x,H)e Wto:\i'.r, HaX:þ and no element of H is already in B. If it exists, we

take the least such pair, enumerate x in A and restrain all elements of H-ô from
B for Rf* at stage ô.

Assume Nfr. is the next requirement to be considered and Lo,",F3y(P(y):e).
We do only something for Nâx if (P-t(¿))o is a function / with dom/e olcf p

and if there are ordinals o e dom / such that for some i-finite Ff and some

y (f(o), y, ÉI)e Wl11ì.,,,, HìX:Q and no element of H is already in A. Then for
all ¿r where not already some computation was preserved for Nf;* at stage ô we

preserve norw a computation by choosing the tripel (/(u), V, H) above minimal and

restraining H-ô from A for Nf;* at stage 6.

The requirements Rf;r, Nf;¡ are treated analogously. End of the construction.

For every requirement R on stage ô at most one element x with ô(¡(ô* is

enumerated in A or B during the construction and at most the elements of an

i-finite set K are altogether restrained from A or B during the construction. The

latter follows for R = Nâr from the fact that the set of steps y where new

computations are preserved for Nf* at stage ô is bounded below ol cf B (we use

here that olclp<B*).Assume then for a contradiction that for all x€P*

xeP*-A e!l i-finite H ((x,H)eWp rç¡AHqB*-B)

Consider some stage ô ) e such that ô e Ç,o for some B -cardinal p with o7 cf p <
p<Px, where p is the parameter of the construction. Then BOôe Su and no

element y with ô < y < p* is ever enumerated or restrained for a requirement at

some stage (ô.
Ç.o is unbounded in p* and no element of Ç,,o is ever enumerated in A

(because at stage ô only elements x)ô are enumerated). Therefore B*-A is

unbounded in p*. Consider some x€P* -A with ô(x(p* such that x is never

restrained from A for a requirement at stage ô together with some i-finite H with
(x,H)€!V,,,(") and HÇP*-P.. Then for the requirement Rf;".u at stage ô we

can always do something from some step yo on as witnessed by the pair (x, H).
Therefore there is a step ? where for Rf"r-,u at stage ô a pair (*',H') is chosen, x'
is enumerated in A and all elements of -FI'-ô are restrained from B. Then
(x',H')€Wp,ç', ancl ,FI'nBn6:P. Because of the choice of ô no element of
H'- õ is afterwards enumerated in B for a requirement at a stage less than ô (we

use here that according to the coltstruction only elements less than o* afe

enumerated for requirements at stage ø). Further by construction no element of

H'-ô is afterwards enumerated in B for a requirement at a stage >ô. Thus

H'çß* -B and x'€A, a contradiction.
Finally assume that for some yoe Lu

R :-{(x, y) | 3 i-finite H ((x, y,H)e W,,,nHq B*-A)}

has an i-finite domain. Let / be an i-finite function which maps some "yo< olcf B
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one-one onto dom R. Define e::P((f, yo)). Consider as before some stage ô>e
such that ô. Ç,o for some B-cardinal p with c-lcf B<p<P*. Then no element y
which is restrained for Nfo.u from A will ever come into A (same argument as

before). Thus for every o{yo there is exactly one computation (f(o), y,,H,)
permanently preserved for Nf;o.'u at stage ô. Further there is a step yl <olcf B

at which for every u{^yo such a computation (f(u), y,,ÉI,) has been preserved.

Therefore the function h from dom R into Lu which maps f(o) on y, for every
D1^lo is an element of Lu and thus i-finite. Obviously we have dom h:domR
and hcR.

This finishes the proof of Theorem 7.1.

Observe that if one does not intend to make A, B i-absolute a simpler guessing

sequence (Su, ô < Éx) is sufficient. Since in this case one has to preserve for every
requirement at most one computation one can simply take for Su all i-finite
subsets of ô. It is tempting to think that these Su are as well sufficient for the
requirements N",x But for the considered relations R one cannot a priori fix an

i-finite set É such that only computations with neighborhoods Hg,tî have to be

considered (although \rye can do this after we know that A, B ate i-absolute).

8. Comparison with Friedman-Sacks' p-recursion theory

Friedman and Sacks [8] have introduced a different recursion theory on limit
ordinals B. They define B-r.e. and B-recursive in the same way but use a difÏerent
notion of 'finite':

xcLB is p-finite :ëxeLu.

This B-recursion theory has been studied in several papers by Friedman

[9, 10, 7t,I2], Homer [15] Stoltenberg-Flansen l42l and the author

126,27,29,371. We call this theory FS p-recursion theory.
FS B-recursion theory is closely connected to the study of 12 sets in o-

recursion theory. Problems about -IzL- sets like the existence of sets of minimal
c-degree for all admissible a have remained unsolved for a long time. The study
of 22L. sets is equivalent to the study of subsets of L. which are Ir definable
over (L., e, C), where C is a complete regular c-r.e. set. This structure has

basically the same fine structure as an initialsegment of L but it is in general

inadmissible (if L is not -I2 admissible). Therefore from the interest in -5r sets

over (L*, e, C) one is naturally lead into a systematic study of 11 sets over Lu for
inadmissible B.

The corresponding notion of 'finite' suggests itself from the paradigm (L-, e, C).
Since one is still interested in c-degrees (where a-finite sets are used as'finite'
sets), one calls a set 'finite' iff it is an element of the considered universe. If one
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analyzes this step in terms of invariance under permutations of the universe one

arrives at the following observation. Even if one studies ZzL- sets "as if they were
r.e." by considering them as Ir sets over (L., e, C) one is still interested in results

about a-recursion theory. Thus the characteristic invariance group is still the set

of all a-recursive permutations of L.-not the set of all 2rL.-permutations of
Lo.

But as soon as one starts a new recursion theory where 'r.e.' is 11 over
(Lo,e,C) it makes sense to adopt as the characteristic invariance group for this
theory the group of all 'recursive' (i.e. At (L-, e, C)) permutation of the universe
L.. It is clear that the first point of view leads to FS B-recursion theory and the
second to invariant B-recursion theory.

FS B-recursion has been very successful concerning the solution of open

problems about -ÐzL* sets (see e.g. the existence of incomparable c-degrees
above 0'[12] or the characterization of the jump of a-r.e. degrees [30,31]).

If one studies FS B-recursion theory for its own sake several strange effects

arise. There are B-recursive sets of nonzero B-degree, there are B-flnite subsets

of B-r.e. sets W which at no point of the enumeration of W are completely
enumerated and there are B-r.e. sets which are B-recursively isomorphic but
which have a different p-degree. Further the definition of 'B-recursive in' is lifted
verbatim from a-recursion theory although for inadmissible p there is no compu-
tation calculus with B-finite computations in the background which justifies this
definition. Therefore central points of o-recursion theory (e.g. absoluteness

effects like hyperregularity) become meaningless in FS B-recutsion theory.
We expect that one gets in invariant B-recursion theory more uniform results.

Many considerations in FS B-recursion theory split into cases because of the
lacking invariance (e.g. the p-degree of a set depends on the chosen representa-
tion, in B::a*<o the p-degree of a set Aca is in general different from the

B-degree of the set {arn lneA}). Constructions in invariant p-recursion theory
keep an unmistakable recursion theoretic flavor because in this theory a computa-
tion from a p-r.e. set behaves as in classical recursion theory. This is due to the
fact that every i-finite subset of a p-r.e. set W is completely enumerated at some

point of the enumeration of W. New strategies are only needed because an

enormous number of requirements have to be satisfied in a very short time.
We consider invariant B-recursion theory as an attempt to capture the fascinat-

ing hard construction problems which arise if one drops the assumption of
admissibility and to present at the same time a sound conceptual framework.

We show in the following two theorems that one can easily recover large parts

of the structure of p-degrees inside the structure of i-degrees.

Observe that in general A<pB does not imply A<tB and A<'B does not
imply A <uB.

Theorem 8.1. For euery B one can embed the B-recursit:e B-degrees into the p-r.e.

i-degrees (both considered as partiql orders).
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Proof. For AcLp define

A; ::{(K 0) | Ke Lu nK À Af ø)

u{(K 1) lrcerrnKr^r(Lu -A)+ø).

A, if B-r.e. if A is B-recursive.
One can translate i-finite neighborhood conditions HcLp-A, into B-finite

neighborhood conditions Ktc A, KzcLp- A:

H c LB- Aië
aKr, KreLs(Kt: utK l(r, l)e rr)

AKz: U{K I (K 0)e rI}nKr c A ¡KzçLp- A).

Therefore A <pB implies At{'Bt for B-recursive A, B: Hc LB- At for i-finite H
is reduced to B-finite neighborhood conditions Krc A, KtçLß-4. These are

reduced to B-finite neighborhood conditions ÉrcA, kt-Lp-B (because

A<uB) and this is equivalent to (,Ér, 1)eLu-8,,(kr,o)eLu-8,.
Since Ai is B-r.e. we need not consider i-finite neighborhood conditions H c A¡.
In order to show A,<,Il,)A<pB rwe use the same translations.
In order to get a degree embedding E we define for a B-recursive B-degree au

,E(øu) as the i-degree of A¡ for some p-recursive A e øp. ¡

It is easy to check that the degree embedding E from the previous proof always

maps the least B-degree 0u on the least i-degree 0,. Further it maps for all
inadmissible B the largest B-recursive B-degree Orut2 on the largest B-r.e. i-degree
0'.

We have shown in l27l that for weakly inadmissible B one can embed the

B-recursive B-degrees one-one onto Íhe B-r.e. i-degrees (observe that the degrees

in the admissible collapse of B are exactly the i-degrees). Such an isomorphism is

not possible for all inadmissible p. Incomparable B-r.e. i-degrees exist for all B
(Theorem 7.1) but there are strongly inadmissible ß without incomparable

B-recursive B-degrees (Friedman [11]). It will be interesting to see for which B an

isomorphism exists.

Theorem 8.2. Assume B is strongly inadmissible and B* is Z.r-regular (i.e. no ZrLe

function maps some ô<B* cofinally into ßx). Then one cqn embed the B-r.e.

B-degrees into those í-degrees a, which are r.e. in some B-r.e. i-degree bi<¡a¡.

Proof. We use the same embedding as in the proof of the previous theorem: for
A B-r.e. we define E(ß-deg(A)) as the i-degree of A'. We have (K, 1) e Ate3 x e
K (*ÉA). Therefore A, is r.e. in A (more exactly one might say'i-r.e. in A'since
only i-finite conditions about A are used). Further A<, A, (triviat). Therefore
ø'::i-deg(A¡) is as required with Dr::i-deg(A).
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It remains to show that for p-r.e. sets A, B: A<pBê4,{,B,.This follows
from the following consideration which enables us to translate for B-r.e. A i-finite
conditions about A' into p-finite conditions about A.

Assume H is i-finite and contains only elements of the form (K 1) with KeLu.
Then HcAr means that V(K 1)e HSxe K(xÉA). We show that in this case

there exists in fact a B-finite set .Kc Lu- A such that

V(K 1)e Hf xe K(xeË).

Fix a B-recursive function P which maps Lu one-one onto p*. Assume II is

i-finite and V(K1)e HaxeK (xÉA). Then the following relation R has

dom R: H:

R ::{((K 1), y) I (K 1)eHnP 1(y)eKnP-1(y)ÉAi.

R is .I2Lu and therefore by Jensen's uniformization theorem [17] there is a ÐrLu
function F c R 'with dom F: dom R. Since H is i-finite and Bx is .Ðr-regular there
is some 6<B* with RgFcô. Then I(o::P[A]Oôe Lu. Since we can't be sure

that P-1[ô-Ko]e Lu we have to shrink it a little more. By using 11 uniformiza-
tion we get a ZrLu function F which maps every (K l)e W on some y€ô-Ko
with P 1(y) e K. This function t' is then in fact i-finite and therefore
K::P t[Rgr'] is as well i-finite, in particular an element of Lu.

We have shown in [31] that for some weakly inadmissible p the B-r.e
p-degrees are isomorphic to the i-degrees of the preceding theorem.

9. The lattice oi p-r.e. sets

We are looking for a notion of 'finite' which is adequate for the study of the
lattice of B-r.e. sets for all p. The analogous step from <r.¡ to a was done by
Lerman [24] (see also his survey [25]). Lerman points out that the a-finite sets are
not an ideal if c*<o. On the other hand he shows that the a*-finite sets (these

are those a-finite sets which have o-cardinality less than o*) capture most of the
properties which are characteristic for finite sets in the lattice of r.e. sets.

We define below for every limit ordinal B the notion of a l-finite set (l for
lattice). We suggest to consider this notion as the generalization of finite in the
lattice of B-r.e. sets. For admissible p this notion coincides with Lerman's
a*-finite set.

Lemma 9.1. Assume B is any limit ordinal and M c Lu. Then the following are

equiualent:
(a) there is some ô<p* qnd a p-recursirse permutation f of LB such that

M: rôl;
(b) M is B-r.e. and eoery p-r.e. subset of M is p-recursiue;
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(c) M is p-recursiue and there ís no B-recursiue function which maps Lu one-one

ínto M;
(d) M is B-recursiue and there is some ô<B* qnd some B-recursiue function

which maps õ one-one onto M.

Proof. (d) ) (a): Assume M is p-recursive and g is a B-recursive function which
maps ô one-one onto M. Lp-M is B-r.e. and therefore according to Lemma 1.9

there is some ôr<max(px,o1cf B) and a B-recursive function ht which maps ô,
one-one onto Lu - M. We have ô' > Bf because otherwise one could combine h¡1
and g-1 in order to project Lu B-recursively into some ordinal less than B*.
Further we have 61>o1cf B, because otherwise ß*<o\cf B and both g and ht
have bounded range in Lu. Thus ôr:max(Ê*, o1 cf B).

One shows analogously that there is a B-recursive function ht which maps

max(B*, ol cf p) one-one onto Lu - ô. hr " h;t can then be used in order to extend
g: ô --+ M to a B-recursive permutation of LB.

(a)à (d) is trivial.
One verifies easily that (d) is equivalent to (b) and (c) by using again Lemma L.9

and the basic properties of B*.

Definition 9.2. A set McLu is called l-finite if there is some ô<B* and a

B-recursive permutation f of Lu such that M:flõ1.

It is obvious that i-finite sets can be defined in the same fashion with o1 cf B
instead of B*.Thus for every B the ordinals olcf B and Bx are the two numbers

which are characteristic for the two basic aspects of finiteness in B-recursion
theory. In the context of computations one arrives at i-finite sets, in the context of
the lattice of B-r.e. sets one arrives at l-finite sets. For the former aspect

boundedness is an essential part of 'finite'. This is different in the lattice of r.e.

sets where finite sets play the role of 'sets of measure zero'. Thus in principle they
might even be unbounded as long as they are thin enough. This phenomenon did
not appear in a-recursive theory because there are no thin e-recursive cofinal
sets. But if o1 cf P<P* there exist very thin B-recursive cofinal sets.

The aspect of l-finite sets as 'sets of measure zero' is described in (c) of Lemma
9.1. In part (b) of this lemma it is verified that l-finite sets possess another
property which is characteristic for finite sets in the lattice of r.e. sets: the induced
lattice on a l-finite set is trivial (a Boolean algebra). Further from (b) one sees

immediately that the l-finite set form a definable ideal in the lattice of B-r.e. sets.

We study in this paper only one other lattice theoretic concept: simple sets.

In order to give a correct definition of simple sets in B-recursion theory we

consider g*(P)-the quotient lattice of the lattice of B-r.e. sets obtained upon
factoring by the ideal of l-finite sets. The elements of g*(p) are equivalence
classes with respect to the congruence relation:

U : V :ëal-finite I lU c. VU I¡ V c U U I).
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According to Lerman [25] one calls an elemert a of a lattice (L, v , n, 0, 1)

L-simple if for all b e L

a¡b:0>b:0.
For the considered lattice @*(P) this definition says that the equivalence class of

a B-r.e. set W is @*(B)-simple iff every B-r.e. set UçLp-W is l-finite.
It is customary in recursion theory to exclude from this lattice theoretic

definition the largest element 1, i.e. the class of B-r.e. sets with l-flnite comple-

ment. Thus we arrive at the following definition, which coincides for admissible

ordinals with the standard definition in a-recursion theory (see Lerman [25]).

Definition 9.3. A B-r.e. set W is simple 11LB- W is not l-finite but every p-r.e.

subset of Lu- W is l-finite.

If B is admissible or weakly inadmissible a p-r.e. set W is simple iff Lu-W is

not i-finite but every B-r.e. subset of Lu - W is i-finite (because àn i-finite set

which is not l-finite contains a B-r.e. non B-recursive set).

We consider in Section 10 simple sets for strongly inadmissible B with B*

B-recursively regular. For these B a B-r.e. set Wwith Lu-WgB* is simple ifi
Lp-W is unbounded in B* but every p-r.e. set U =Lu- W is bounded below Bx

and this holds iff Lu-W is unbounded in px but every U eLu with Uc Lu - W is

bounded below B*.

10. A p-r.e. degree without a sirnple set and a splitting theorem for simple p-r.e.

sets

If p is admissible or weakly inadmissible then every p-r.e. non p-recursive

i-degree contains a simple set. This comes as a side result out of the regular set

theorem in a-recursion theory, which says that every a-r.e. o-degree contains an

d-r.e. set A which is regular (i.e. Vô<o (AOLue L*)) (see [28]). Now if
f :a--->A is an o-recursive enumeration of a regular non @-recursive set A, then

the deficiency set

D :: {x I ¡ y t x (f(v) </(x))}

is simple and of the same a-degree as A.
For strongly inadmissible B regular B-r.e. sets are very rare. E.g. for p:Nr+<,r

every regular B-r.e. set is of degree 0t. But for these B one can still construct

nontrivial simple sets. In fact a solution of Post's problem in general produces

automatically simple sets. Theorem 10.4 below shows that these simple sets have

some of the benefits of regular sets in e-recursion theory: rwe can split them into

t'wo r.e. sets of lower degree. On the other hand the question which B-r.e.
i-degrees contain simple sets is more diffcult than the analogous question about
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regular sets in d-recursion theory. We produce in Theorem L0.3 a B-r.e. non

B-recursive i-degree without a simple set. Both constructions rely on the follow-
ing combinatorial lemma.

Lenrma 10.1 (ZFC). Assume p and x are cardinals and p<cf x. Let M be an
unbounded subset of x and f be a function which assigns to euery element of M some

subset of x of cardinality less than p. Then there is some õ 1x such that

V o ( rc 3 r > o (r e M nf(r)ñ (o- ô) : ø).

Proof. Assume such a 6 does not exist. Then

V ô < rc f o( r Y ¡> o (r e M ---> f(r)¡(o - õ) f Ø).

Define a strictly increasing sequence (ô")"=o of ordinals less than r as follows:

ô6:: 0;

ôr*1 is the least o)ô, such that o(r and

V rèo (re M---> f(t)n(ø- 6")f Ø);

ô^ :: sup ô" for À limit.
1<À

Since p(cf rc this sequence is well defined and 6::Sup.vcpô" is less than rc.

Take some ie M such that i>5. Then

Y t < p ff(;) n(ô",*1- ô",) I ø).

But this is impossible since the cardinality of f(ã) is less than p. tr

The preceding lemma is closely related to the familiar Á-System lemma, which
is often used in forcing and combinatorics (see Kunen l23land Jech [16]). In fact
Lemma 10.1 supplies a different proof of the A-System lemma, which follows as a

corollary.

Corollary f.:O.2. Assume u is a cardinal with 2 : u*. Then for euery family W of
subs¿fs of u** of cardinality <u with lWl :u** there is someWlcW such that

l%l:lWl and W1 is quasi-disjoint (i.e. there is some z such that Yx,ye
%(xny:z).

Proof. Let f be an enumeration of W with dom / : D**. By Lemma 10.1 there is
some ô (¿r+* such that

V ô < rfz > o (fþ)o (o- ô) : ø).

Thus we can choose some WcW such that lW'l:lWl and for all x,yeW'
xOyg6. Since lAl<r* and (tr*)":'D*<u** there is some W1 cW such that

l%l:lW'l and all elements of W1 have the same intersection with ô. ¡
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Observe that Lemma 10.1 works as well if r is the successor or a singular
cardinal p. This situation will actually occur in the application of Lemma 10.1 in
Theorem 10.3 and Theorem 10.4 (e.g. for B:b{-*1-f R1). One can not use the
Á-System lemma here, because it does not hold for r:p*, p singular, W a

collection of sets of size less than p, card W: x.

Theorem 10.3. Assøme o1. cf P < P* and Bx is a regular cardinal in L. Then there

is a p-r.e. i-deg,ree al0 such that no i-degree b<a contains a simple set.

proof. We use the combinatorial Lemma 10.1 with rc.:B* and p::o|.cf p and

in addition O. We construct a B-r.e. non B-recursive set A=ß* such that B#rA
for all simple sets B. We can assume without loss of generality that Lß - 6 c B*. If
D is any other simple set we consider instead B::PlDlU(Lp-B*), where P
maps Lu one-one onto B*. B is again simple and of the same i-degree as D.

If B is a simple set with Lp-Bc Bx, then Lr-B is unbounded in B* but every

B-r.e. set (JcLp-B is bounded below B*. If B:{e)o, then there is a stage of
the construction where {e} computes from the so far enumerated part of A, that
unboundedly many xeß* are not in B (we use here that oLcf P<B*). The
strategy is then, to preserve these computations for unboundedly many arguments

x. The set of these arguments is then an element of Lu and unbounded in Lu-8.
This contradicts B simple.

The burden of this strategy is, that a single requirement may prevent an

unbounded subset of p* from A. Thus we get problems to satisfy the positive
requirements which make A non B-recursive.

Our escape is the fact that not all untrounded subsets of B* are equal. If we

consider e.g. complements of closed unbounded sets in B*, then these comple-
ments are so thin, that the union of less than Bx many still does not fill up B*. By
the help of Lemma 10.1 we may choose an unbounded set of arguments x such

that all the computations {e}A(x) together use only some part of A which lies in
the complement of a closed unbounded set. Concerning the 6<p* given by
Lemma 10.1 we use ô in order to guess at Anô.

Fix a O-sequence (S5 lô.8*)e Lu as in the proof of Theorem '7.1.Let P be a
p-recursive function which maps Lu one-one onto B*. Let q:o7c|B-+p be

B-recursive, strictly increasing and cofinal.
At stage ô<p* we consider requirements N",x andP" where e(ô and Xe Su.

The cardinality of these requirements is less than É*. N".r. tries to prevent that
B<,4 via P-l(e) for a simple set B. N".x uses X as a guess at Anô. P" tries to
prevent that W" ,ç¡: Le- A.

The construction proceeds in o1. cf B many steps. At step "y we use all
information available in Lor-,,t. At every step "y we run through all stages ô < p*
and consider all requirements at stage ô in some fixed order.

Step 7, støge 6: Assume N",r is the next requirement which is to be considered.
We do only something for N.,*, if P-'(e) converges in Lo<r> and if never before
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something was done for N",* at stage ô. In this case we only do something if @

holds:

@ Vo<É*f rÞo (re go¡3i-finite H((r,H)ew"L:iil,
nHo(o-ô):þnHt\X:ø
n(no element of II is already in A))

If @ holds we choose a sequence (r,, H,)u-ß* such that (r,),-p* and (min(Il" -
ô)),.p* are strictly increasing and for every vH, is i-finite, (r,,H")e Wrtl',"l"t,

H,.ìX:l),no element of II" is already in A and such that U{H" Iz<p*} lies in

the complement of a closed unbounded subset of B*. One gets such a sequence by

constructing simultaneously a closed unbounded set in the complement of

U{-[{" lr<ß*L using @. After we have fixed such a sequence we restrain
(U{I{" lr<9*Ð-ô from A for N",* at stage ô.

If P. is the next requirement at stage ô, we only do something if no element of
W|?i.rhas so far been enumerated in A. If there is some x eWttl¿r, ô(t<Ê*,
which is not restrained from A for any requirement at some stage {ô, we

enumerate the least such x in A.
End of the construction.
In order to see that A has the desired properties we note first that for every

stage ô the set of x which we enumerated in A for requirements at stage < ô is
bounded below Bx. Since 6 is not enumerated in A for a requirement at stage ô

and ¿,.¡<cf P* there is a closed unbounded set C in Ê* which is disjoint from A.
Further for every stage 6 there is a closed unbounded set Cô in B* such that no

element of Ç is ever restrained from A for a requirement at stage <6 (use the

fact that the intersection of <B* many club sets in B* is club).
Assume for a contradiction Íhat Lp - A: Wp-,1e). Consider some stage ô ) ø.

Then ÇOC is closed unbounded in B* and Cunccwplk). Take any xe
Cu n C with x > ô. Take 7 large enough such that P-t(e) converges in Lo1"¡ and

xeWt;:l¿r. Then we make Wr-'1.tìAf@ during the consideration of P. aistage
ô of step 7 if this was not already done before. Therefore A is not B-recursive.

Assume now for a contradiction that B<,4 via P 1(e) for some simple set B
with Lu -Bl:ß*. Then there is some stage "yo such that P t(") converges in Lo1ro,

and there is an unbounded set of re B*-B such that for some i-finite -Ér with
HcLp-A we have (r, H)eWf,!1i", (if such a yo does not exist'we get a cofinal
function from o1 cf B in p*, contradicting the regularity of B*). We apply then
Lemma 10.1 to the function which assigns to these r some FI as above. Thus
there is some ô<Bx such that for all o<g* we can find some r where the
associated H satisfies Hf-t (o-ô):ø.Go to some stage ôo>ô such that A Oôoe
Sô". At stage "yo we consider then N",r,,r-.,6,, at stage ô0. For this requirement @ is
at this point satisfied. Therefore at some point of the construction a sequence
(r,,H,),eß* is associated with N.,o.ro at stage ôo. Only boundedly much is

enumerated in A for positive requirements at stages <ôo. Therefore there is some
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volß* such that H,ÇL,-A for v2vo. Since B<,4 via P t(e) we have then
.r,{.8 tor vÞuo. Thus {r" lr=ro./r is an unbounded subset of Lu-B which is an
element of Lu. This contradicts B simple.

This finishes the proof of Theorem 10.3.

Theorem 1O.4. Assume o1. cf P < P* and B* is Zr-regular (i.e. there is no 22Lu
function which maps some 6 < B* cofinally into B*). Then for euery simple B-r.e. set

W there are p-r.e. sets Wr,W2 such that WrnW2:ø, W:W1lJWz, Wr1rW,
W"1,W and W:iWr@W2.

Proof. No Splitting theorem has so far been proved for the strongly inadmissible
case because the familiar preservation strategy of Sacks leads to many problems.
Fix some B-recursive strictly increasing function q which maps o1 cf B cofinally
into B. It may very well be that for every l<c-lcf B the,yth requirement
demands that from a certain point on an initial segment of W1 of length q(y) has
to be protected. Since every element of W must end up in W, or in IV, this means
that nearly no computation from W, can be protected for the sake of a

requirement of priority >o1cf P. fi P is admissible or weakly inadrnissible one
can make the list of requirements so short, that no requirement of priority
>o1cf. B exists (see [15,31.,40,4L]). There is no way to do this here because B
may have a larger cardinality than o1 cf B.

Our first step is to project the problem into B* so that we can make use of the
assumed regularity of B*. It is obviously enough to solve the following problem:

Given some B-r.e. C ç þ* such that P* - C is unbounded in Bx but every B-r.e.
set Uc P*-C is bounded below B*. Construct B-r.e. sets A, B such that
AîB:Ø, C:AIJB, A1,C, B<,C and C:rA OB.

As in the proof of Theorem 10.3, strong inadmissibility of B has one good
feature: If C:{e}4, then there is a stage in the construction where for an in p*
unbounded set of arguments there exist computations of {e} from the constructed
part of A. At this point we have then a lot of choice concerning which
computations from A we want to preserve.

But the similarity to the proof of Theorem 10.3 ends here because we can no
longer afford to restrain forever any in p* unbounded set of elements from A for
a single requirement, no matter how clever we choose this unbounded set. Every
element of C is put in A or in B and all the elements which are restrained from A
will injure computations from B.

Fortunately in the considered situation the Sacks preservation strategy does not
require to preserve foreuer a large number of computations for a single require-
ment (although this has so far always be done). For a single requirement it is

enough to preserve for a limited time a large number of equations C(x):{e}o(x).
This preservation finally forces the appearance of an inequality for some xo which
is enumerated in C. From that point on we only have to preserve the single
computation {r}o(xo), which uses only i-finitely much from A. The elements
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which were restrained in order to preserve the other computations {e}A(x) are

released and can now be restrained from A for the sake of other requirements. A
combinatorial trick makes sure that no single element is restrained unboundedly
often for changing requirements. Therefore we can finally put every element of C
inAorB.

In order to make the combinatorial argument work it is essential that we choose

very carefully the large number of equations which we preserve for a limited time.
Lemma 10.1 supplies again a stage ô<B* where a particularly convenient choice

is possible.

Observe that it is not possible to make A, B in addition simple because each

lies in the complement of the other.
We start now with exact construction of A, B and assume that a -I1Lp

definition of C has been fixed.
Let P be a B-recursive function which maps Lu one-one onto B*. Fix a

O-sequence (Su lô< ß*)eLp as in the proof of Theorem 7.1.

We have for every e e Bx requirements Nl, N3. Nf tries to prevent that

Vxe B* GÉC<>f i-finiteH((x, W)e Wp,ç',AH,- P*-A)).
On stage ô<B* we consider all requirements Nf¡, Nlrwith e<ô and Xe Su.

Nf¡¡ considers X as a guess at A o ô.

There is a B-recursive function h which maps for every ô the requirements
considered at stage ô one-one onto some ordinal h(ô) with ô<lx(ô)<B*.

We write then the requirements at stage ô in the form (Ru.,),.¡15;.

The construction proceeds like in Theorem 1,0.3 in o1 cf B many steps. At
every step y<ol cf B we run through all stages ô and consider the requirements
(Ra.i)i.¡"rat in their assigned order.

Construction:
Step y, Stage 6. Assume Rr,¡ is the next requirement to be considered.
Assume that Ru,, is some Nf*. We do only something for Nf* if Lq(1)Þ

[3y(P(y): ¿)].
If Rô.r was never activated before we activate Ru,r now if

(*) Vø(ô < o<P* --->ar(o<r<B*nf i-finite FI((¡ Fl)e Wt;'ti",

n (no element of H is already in A)
¡ H c (ß* - r) u ô n ÉI nX : Ø))).

In this case \ve associate a sequence (r,, H,),.u" with Ru,, which is defined by
recursion as follows. Assume (r,,,H,,)u,-, is already defined and v(p*. Define

o, :: sup{y e Bx | (some sequence (i, iIo)o-p* has been associated with a

requirement on stage {ô or some Rr.r,, with j'< j and ! €É, for some
p < /) v (y : ,,, for some v' < v)v (y e H,, for some z' < z)).

We define then (r", H,) as a pair (r, H) which has a relationship to
o::max(o,, ô)+1 as in (x).
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In case that Ru,, = Nâ* was already activated at some step before but is not yet

finished we check first whether some element of ô-X has been enurnerated into
A. If yes, we finish Ru,, now (nothing else is done for Rô,j). If no, we check for the

sequence (r", IL) which was associated with Ru.t before whether for some

v < P'o Lolr',Þlr, e C] and no element of H,- ô is already in A or has before been

restrained from A or B for some requirement on stage <ô. If such a z exists we

choose it minimal and restrain H"-ô from A for Ru.¡. Ru,r is then finished.

At the end of step ? we consider all y such that Lo1";F[ye C] but y is not yet
enumerated in A or B. If y is not in some II,-ô for some sequence (r,,H,)u-B*
associated with some activated but not yet finished requirement Ru.¡ we enumer-
ate now y in A or in B. We look then at the requirement of highest priority for
which y has been restrained. If this requirement restrains y from A then we

enumerate y in B. If it restrains y from B or if y is not restrained for any

requirement we enumerate y in A.
We say that Ru,, has higher priority than Ru,.r, if ô<ô'or ô:ô'and j<l'.
End of the construction.

Fact 1. Euery requirement Ru.¡ = Nâ* which is actiuated is lqter finished.

Proof. Let (r,, Hu),.p* be the sequence associated with Ru., = Nâx when it is

activated.
Obviously Ra,¡ is finished if some element of ô -X is enumerated in A. Thus we

can assume that A OôcX. It is already enough to know that Bx is -Ir-regular in
order to see that there is Sorr€ /6 ( px such that for v 2 vo no element of -FI, - ô is
ever restrained for some requirement on stage <ô (of course \rye use here as well
that -FI" -ô contains for large z only large elements). Further as long as Ru,, is not
finished no element of any -FI" - ô is enumerated into A according to the

construction.
Therefore as soon as 7 is large enough such that Lo1";Þ[r, e C] for some z] vo

(such a 7 exists by the properties of C) Ru.t will be flnished. ¡

Fact 2. For euery element of y < B* there are only finitely many requirements R6.¡

such that y e H, - õ for some v 1þ* , where (r,, H,),-u* is the sequence associated

with Ru,,.

Proof. If y is in some ilr_ 6 of a sequence(i,,FI) associated with R5,, and y is
as well in some ,F1" - ô of a later defined sequence (r,, H,) associated with a
requirement Ru; of lower priority than R5,¡, then v < p by construction (see the
definition of ø, in the construction). Therefore this cannot be iterated infinitely
often.

But still there remains something to prove because rwe may have v > p if Ru., is

of higher priority than R5,,-.

Assume the claim is false for y. Let M be the set of the first <,r requirements Ru.t

(ordered by priority) such that yeH"-ô for some z(B*, where (r,,H,)"-p* is
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the sequence associated with Rð.j. We consider then out of M the first <,r

requirements (Ru,.i,),.- in the order of their activation during the construction.
This sequence contains a subsequence (Ra,".¡,,.)^.- such that for eveÍy n€oRa,.,i,.
has higher priority than R¡,,,,,,j,,... (we use here the definition of M). 11 (r,; H,)"-p*
is the sequence associated with Ru,,,.j,. we write than z¡- for the v with ) e 'FI" - ô¡".

Then by construction we have u¡o) ví,> '. '. '. , a contradiction. ¡

We show now that C: {P l(e)}A implies that the requirement Nf succeeds at

some stage ô ) e, which leads to a contradiction. In order to prove the existence of
such a stage ô one can directly apply the combinatorial Lemma 10.1 if B* is

sufficiently regular. In order to get along only with l2-regularity of B* we give in

the proof of Fact 4 below an effective version of the proof of the combinatorial
lemma. The following Fact 3 will be needed for this effective version.

Fact 3. Assume that for all x e B*

xePx-Cê3 i-finiteH ((x,II)€ Wp '1"¡A H-9*-A)
Then for eoery ^lo<o1 cf B there is some 1 such that

1o< 7 <ol cf p

qnd

V 6 < B* V o < F* 3r (o< r < P*nll i-finite H
(("' ÉI) ew';:'l¿.rní nA n ô : Ø¡ (no element of H is enumerated in
A by the end of step y))).

Proof. Assume the contrary. Then for every "y with ?o<"/<olcf p there are
ô", o" (B* such that no rlo, satisfies the condition above. It is enough to show
that the øï can be chosen in such a way that ô::sup{ø, lyo=y<oL cf B}<B*.
Because then we can take some r > õ with r € ß* - C. For this r there exists some
i-finite -FI with (¡,H)eWiì, for some -yt>^to and -FIc P*_ A. Because 12oy,
this is a contradiction to the properties of o",.

We show now that one can assign ordinals ô^r, o, as above by a 22 function. In
order to express that ô", o-, have the correct properties we need as well ô", I A. In
order to see that the function ô -+ ô l-ì A is 22Lu we consider the B -recursive set

A,:: {(u, x) | u <ol cf B and x is enumerated in A by the end of step u}.

For every ô<B* the set A,ñ(o1 cf Bxô) is an elementol Lu and the function
ô -+ A, lì (o1 cf p x ô) is 22Lg One can express therefore by a 22formula that for
'y<olcf B some tuple (xr, x2,x3,xa) has the properties which we expect from
(ô", o' A, ì(oI cf B x ô"), A n ô"). With .Ð2-uniformization we get a ZrLu func-
tion 7-+(ô", tr*A,O(o1 cf Bxô"),Anôr) and thus in particular a ZrLufunc-
tion ^y+o". Since p* is -Ðr-regular the set {o" lyo=y<o1cf B} is bounded
below B*. tr



'70 W. Maass

In the following let p be an element of Lu which contains all parameters of the

construction. We know then that A n 6, B lì ô e Su for ô e

Cr::{ô<ß* lh.[(6U{p})xr,l]nB*:ô} as in the proof of Theorem 7.1.

Fact 4. Assume that for all x e B*

x € Px- C<åf i-finiteH ((x, H)e Wr,ç¡AHç B*-A).
Then for eDery ^yo<o\ cf p and eoery ôo<Ê* there are y,õ such that yo<1<
oTcf B, ôo<ô<Ê*, ô. C, and

Vo < B*ar@<r<Bxnf i-finite H((¡,H)eW!:\',¡,

nHt^tAna:Ø¡(no element of H is enumerated

in A by the end of stage r)¡Ilo(o-6):ø)).
Proof. Take 7 2 ^yo according to Fact 3. Assume for a contradiction that the

desired ô does not exist for this ^y. Then rwe can assign to every ô e Co some o e Co

such that 6(o(Bx and for all (r,H)e Wi..,".,., with ø<11þ*, Hl\Anô:ø
and no element of H is enumerated in A by the end of stage y we have

HO(o-õ)+ø. We define a function h:o1.clþ-þ* such that for vloLcf B

h(v+I) has the same relationship to h(v) as ø to ô above. We define h(À):
SUp,.r h(v) for limit ordinals À. In order to show that heLu we first define a

function g which assigns to z not only an ordinal o : h(v) but in addition

(A, O(ø1cf B xo), Aìo, (ß* -C),O(ø1cf pxC-), (Ê*-Ç)no).

A, is again a p-recursive set associated with A (see the proof of Fact 3) and

(B*-C"). is an analogous B-recursive set associated with the B-r.e. set ß*-Cr.
'Ihe exact definition of g is as follows. Fix some ôt>60 such that ôr€Co.

g(0) :: (ô,, A, O (oL cf F x ôr), A n ô1, (B* - C").

O (ø1 cf Ê x ôr), (B*- C") n ô1);

g(z+ 1) :: (o, A,o(o1 cf 0 x o), A )o,(B*- Cr),

t^r(ø1 cf ß x o),(É* - Ç) n o)

where o>(g("))o has the same properties w.r.t. (g(r))o as o w.r.t. ô above and is

minimal with this property;

g(À) :: (o, A,1\ (ø1 cf B x o), A n ø (Ê* - C),
o(ø1cf ßxo),(É*-Ç)nø)

where o : sup,.^(g(z))o for limit ordinals À.

In order to show that ge Lu we prove by induction on v(v<o1cf p) that
glveLu". The induction step is only nontrivial if z is a limit ordinal À. In this

case one knows already that gl peLu- for p<À and one can easily see that the

function p---> gf p for p<À is 12 definable over Lu. One has to express in this.I,
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formula that for v*t<p (g(z+1-))o is minimal such that (g("+l))ocC"
and. . . . At this point we use that the corresponding initial segments of Ç are
included in the values of C. So C lÀ is 2rLp and therefore
e::sup{(g(z))ol"<À}<B* because B* is .I2 regular. But then ìve can give as

well a.XrLu definition of gf À because we can use the sets A (\e, Col-ìeelu as

parameters in this -Ð1Lu definition. Since g l¡ is 21Lp and bounded below B* it is
in fact an element of Lu*.

Thus we have shown that ge Lu. Therefore 5::sup{(g(y))o lv<c-lcf B}<B*.
Since "y was chosen according to Fact 3 there is a pair (r,II)e W?:|L¡ such that
5<"< P*, H i-finite HaAnS:ø and no element of Él is 

"n.r-".aiéd 
in A by

the end of step T By the definition of g \we have for every v 1
o1. cÎ p FIn((g(z+1))o-(g(z))")+ø. Since the function z- (9(z))6 is strictly
increasing this is a contradiction to -FI being i-finite. ¡

Fact 5. There is no e < p* such that for all x e p*

x e p*- C<å3 i-finite H ((x, H) ewr,(e) nHç B*-A)

Proof. Assume the contrary. Take some ys< 07 cf P such that Lor"a F

ly (P(y):e) and some ôo such that e(ôo(Bx. For these ^yn, ôs let -y, ô be
ordinals as in Fact 4.

Since ô e Ç we have A Oô e Su. Further Nâo.u on stage ô is activated at step y
if it was not already activated before. According to Fact 1 there is then some step
y, where Nâo.,u on stage ô is finished. Since no element of 6-(Añô) is

enumerated into A the requirement is finished because there is apair (r,,l{") out
of the sequence associated with Nâo.,u on stage ô such that Lo,r,rFIr"eCl and no
element of H,- ô is restrained for some requirement on stage <ô and no element
of H,-ô is already in A. all elements of H,-ô are then restrained fronl A for
Nâo.,u on stage ô when this requirement is finished.

Since ôe Ç no element of H,-ô is ever restrained for a requirement on stage
(ô. Further no element of II" - ô is ever restrained for a requirement on stage
>ô. after it is restrained for Nâo^u on stage ô. Therefore no element of II,-ô is

ever restrained for a requirement of higher priority.
Thus -f{, =P*-A and r.e C and (¡,,H,)e Wp-l(e\, a contradiction. n

Fact 6. C: AU B.

Proof. By Fact 1 and Fact 2 for every y € B* there is a step after which y is never
restrained by an activated requirement which is not yet finished. tr

It follows as in classical recursion theory that A<¡ C B<¡C and ç:tAÇl^B.
Therefore by Fact 5 and Fact 6 A and B have all the desired properties. This
finishes the proof of Theorem 10.4. n
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