
Reducing Communication for Distributed

Learning in Neural Networks

Peter Auer Harald Burgsteiner Wolfgang Maass
{pauer,harry,maass}@igi.tu-graz.ac.at

Institute for Theoretical Computer Science
Technische Universität Graz

A-8010 Graz, Austria

Abstract. A learning algorithm is presented for circuits consisting of
a single layer of perceptrons. We refer to such circuits as parallel per-

ceptrons. In spite of their simplicity, these circuits are universal approx-
imators for arbitrary boolean and continuous functions. In contrast to
backprop for multi-layer perceptrons, our new learning algorithm – the
parallel delta rule (p-delta rule) – only has to tune a single layer of
weights, and it does not require the computation and communication of
analog values with high precision. Reduced communication also distin-
guishes our new learning rule from other learning rules for such circuits
such as those traditionally used for MADALINE. A theoretical analysis
shows that the p-delta rule does in fact implement gradient descent –
with regard to a suitable error measure – although it does not require
to compute derivatives. Furthermore it is shown through experiments on
common real-world benchmark datasets that its performance is compet-
itive with that of other learning approaches from neural networks and
machine learning. Thus our algorithm also provides an interesting new
hypothesis for the organization of learning in biological neural systems.

1 Introduction

Backprop requires the computation and communication of analog numbers
(derivatives) with high bit precision, which is difficult to achieve with noisy ana-
log computing elements and noisy communication channels, such as those that
are available in biological wetware. We show that there exists an alternative so-
lution which has clear advantages for physical realization: a simple distributed
learning algorithm for a class of neural networks with universal computational
power that requires less than 2 bits of global communication. In order to get
universal approximators for arbitrary continuous functions it suffices to take a
single layer of perceptrons in parallel, each with just binary output. One can
view such single layer of perceptrons as a group of voters, where each vote (with
value −1 or 1) carries the same weight. The collective vote of these percep-
trons can be rounded to −1 or 1 to yield a binary decision. Alternatively one
can apply a squashing function to the collective vote and thereby get universal
approximators for arbitrary continuous functions.

Parallel perceptrons and the p-delta rule are closely related to computational
models and learning algorithms that had already been considered 40 years ago
(under the name of committee machine or MADALINE; see chapter 6 of [7] for
an excellent survey). At that time no mathematical tools were available to show
the the universal approximation capability of these models. A major advantage of
the p-delta rule over algorithms like MADALINE (and backprop for multiplayer
perceptrons) is the fact that the p-delta rule requires only the transmission of less
than 2 bits of communication (one of the three possible signals “up”, “down”,
“neutral”) from the central control to the local agents that control the weights
of the individual perceptrons. Hence it provides a promising new hypothesis
regarding the organization of learning in biological networks of neurons that
overcomes deficiencies of previous approaches that were based on backprop. The
p-delta rule consists of a simple extension of the familiar delta rule for a single
perception. It is shown in this article that parallel perceptrons can be trained
in an efficient manner to approximate basically any practically relevant target
function. The p-delta rule has already been applied very successfully to learning
for a pool of spiking neurons [6]. The empirical results from [6] show also that
the p-delta rule can be used efficiently not just for classification but also for
regression problems.

2 The parallel perceptron

A perceptron (also referred to as threshold gate or McCulloch-Pitts neuron) with
d inputs computes the following function f from R

d into {−1, 1}:

f(z) =

{

1, if α · z ≥ 0
−1, otherwise ,

where α ∈ R
d is the weight vector of the perceptron, and α ·z denotes the usual

vector product. (We assume that one of the inputs is a constant bias input.)
A parallel perceptron is a single layer consisting of a finite number n of per-

ceptrons. Let f1, . . . , fn be the functions from R
d into {−1, 1} that are computed

by these perceptrons. For input z the output of the parallel perceptron is the
value

∑n

i=1
fi(z) ∈ {−n, . . . , n}, more precisely the value s(

∑n

i=1
fi(z)), where

s : Z→ R is a squashing function that scales the output into the desired range.
In this article we will restrict our attention to binary classification problems.

We thus use as squashing function a simple threshold function

s(p) =

{

−1 if p < 0
+1 if p ≥ 0.

It is not difficult to prove that every Boolean function from {−1, 1}d into {−1, 1}
can be computed by a such parallel perceptron.

For regression problems one can use a piecewise linear squashing function.
Parallel perceptrons are in fact universal approximators: every continuous func-
tion g : R

d → [−1, 1] can be approximated by a parallel perceptron within any
given error bound ε on any closed and bounded subset of R

d. A prove is shown
in the full paper [1].

3 The p-delta learning rule

3.1 Getting the outputs right

We discuss the p-delta rule for incremental updates where weights are updated
after each presentation of a training example. The modifications for batch up-
dates are straightforward. Let (z, o) ∈ R

d×{−1, +1} be the current training ex-
ample and let α1, . . . , αn ∈ R

d be the current weight vectors of the n perceptrons
in the parallel perceptron. Thus the current output of the parallel perceptron is
calculated as

ô =

{

−1 if #{i : αi · z ≥ 0} < #{i : αi · z < 0}
+1 if #{i : αi · z ≥ 0} ≥ #{i : αi · z < 0}.

If ô = o then the output of the parallel perceptron is correct and its weights
need not be modified. If ô = +1 and o = −1 (we proceed analogously for
ô = −1 and o = +1) the number of weight vectors with αi · z ≥ 0 needs to
be reduced. Applying the classical delta rule to such a weight vector yields the
update αi ← αi−ηz, where η > 0 is the learning rate. However it is not obvious
which weight vectors with αi · z ≥ 0 should be modified by this update rule.
There are several plausible options:

1. Update only one of the weight vectors with αi · z ≥ 0. For example choose
the weight vector with minimal |αi · z|.

2. Update N of the weight vectors with αi ·z ≥ 0, where N is the minimal num-
ber of sign changes of individual perceptrons that are necessary to get the
output ô of the parallel perceptron right. This is the MADALINE learning
rule discussed in [7, Section 6.3].

3. Update all weight vectors with αi · z ≥ 0.

For our p-delta rule we choose the third option. Although in this case too many
weight vectors might be modified, this negative effect can be counteracted by
the “clear margin” approach, which is discussed in the next section.

Note that the third option is the one which requires the least communications
between a central control and agents that control the individual weight vectors
αi: each agent can determine on its own whether αi ·z ≥ 0, and hence no further
communication is needed to determine which agents have to update their weight
vector once they are told whether ô = o, or ô = +1 and o = −1, or ô = −1 and
o = +1.

3.2 Stabilizing the outputs

For any of the 3 options discussed in the previous section, weight vectors are
updated only if the output of the parallel perceptron is incorrect. Hence weight
vectors remain unmodified as soon as the output ô of the parallel perceptron
agrees with the target output o. Thus at the end of training there are usually
quite a few weight vectors for which αi ·z is very close to zero (for some training

input z). Hence a small perturbation of the input z might change the sign of
αi ·z. This reduces the generalization capabilities and the stability of the parallel
perceptron. Therefore we modify the update rule of the previous section to keep
αi ·z away from zero. In fact, we try to keep a margin1 γ around zero clear from
any dot products αi · z.

The idea of having a clear margin around the origin is not new and is heavily
used by support vector machines [5, 3]. In our setting we use the clear margin to
stabilize the output of the parallel perceptron. As is known from the analysis of
support vector machines such a stable predictor also gives good generalization
performance on new examples. Since our parallel perceptron is an aggregation
of simple perceptrons with large margins (see also [4]), one expects that parallel
perceptrons also exhibit good generalization. This is indeed confirmed by our
empirical results reported in Section 4.

Assume that αi · z ≥ 0 has the correct sign, but that αi · z < γ. In this
case we increase αi · z by updating αi by αi ← αi + ηµz for an appropriate
parameter µ > 0. The parameter µ measures the importance of a clear margin:
if µ ≈ 0 then this update has little influence, if µ is large then a clear margin is
strongly enforced. Observe that a larger margin γ is effective only if the weights
αi remain bounded: one could trivially satisfy condition |αi · z| ≥ γ by scaling
up αi by a factor C > 1, but this would have no impact on the sign of αi · z
for new test examples. Thus we keep the weights αi bounded by the additional

update αi ← αi − η
(

||αi||
2
− 1

)

αi, which moves ||αi|| towards 1. Concluding,

we can summarize the p-delta rule for binary outcomes o ∈ {−1, +1} as follows:

p-delta rule

For all i = 1, . . . , n:

αi ← αi − η
(

||αi||
2
− 1

)

αi + η

o · z if ô 6= o and o · αi · z < 0
+µ · z if ô = o and 0 ≤ αi · z < γ

−µ · z if ô = o and −γ < αi · z < 0
0 otherwise .

The rather informal arguments in this and the previous section can be made
more precise by showing that the p-delta rule performs gradient descent on an
appropriate error function. This error function is zero iff ô = o and all weight
vectors αi satisfy |αi · z| ≥ γ and ||αi|| = 1. The details of the error function
are given in the full paper [1].

3.3 Application to networks of spiking neurons

One can model the decision whether a biological neuron will fire (and emit an
action potential or “spike”) within a given time interval (e.g., of length 5 ms)

1 The margin needs to be set appropriately for each learning problem. In the full
paper [1] we define a rule for setting this parameter automatically.

quite well with the help of a single perceptron. Hence a parallel perceptron may
be viewed as a model for a population P of biological neurons (without lateral
connections inside the population), where the current output value of the parallel
perceptron corresponds to the current firing activity of this pool of neurons. The
p-delta learning rule for parallel perceptrons has already been tested in this
biological context through extensive computer simulations of biophysical models
for populations of neurons [6]. The results of these simulations show that the
p-delta learning rule is very successful in training such populations of spiking
neurons to adopt a given population response (i.e. regression problem), even for
transformations on time series such as spike trains. We are not aware of any
other learning algorithm that could be used for that purpose.

Table 1. Empirical comparison. Accuracy on test set (10 times 10-fold CV).

Dataseta #exam. #attr. p-delta MADA- WEKA WEKA WEKA

(n = 3) LINE MLP+BP C4.5 SVMb

BC 683 9 96.94 % 96.28 % 96.50 % 95.46 % 96.87 %
CH 3196 36 97.25 % 97.96 % 99.27 % 99.40 % 99.43 %
CR 1000 24 71.73 % 70.51 % 73.12 % 72.72 % 75.45 %
DI 768 8 73.66 % 73.37 % 76.77 % 73.74 % 77.32 %
HD 296 13 80.02 % 78.82 % 82.10 % 76.25 % 80.78 %
IO 351 34 84.78 % 86.52 % 89.37 % 89.74 % 91.20 %
SI 2643 31 95.72 % 95.73 % 96.23 % 98.67 % 93.92 %
SN 208 60 74.04 % 78.85 % 81.63 % 73.32 % 84.52 %

a BC = Wisconsin breast-cancer, CH = King-Rook vs. King-Pawn Chess Endgames,
DI = Pima Indian Diabetes, GE = German Numerical Credit Data, HD = Cleveland
heart disease, IO = Ionosphere, SI = Thyroid disease records (Sick), SN = Sonar.

b MADALINE: n=3, MLP: 3 hidden units, SVM: 2nd degree polynomial kernel

4 Empirical evaluation

For another empirical evaluation of the p-delta rule we have chosen eight datasets
with binary classification tasks from the UCI machine learning repository [2].
We compared our results with the implementations in WEKA0 of multilayer
perceptrons with backpropagation (MLP+BP), the decision tree algorithm C4.5,
and support vector machines (with SMO). We also compared our results with
MADALINE. We added a constant bias to the data and initialized the weights of
the parallel perceptron randomly1. The results are shown in Table 1. Results are
averaged over 10 independent runs of 10-fold crossvalidation. The p-delta rule
was applied until its error function did not improve by at least 1% during the

0 A complete set of Java Programs for Machine Learning, including datasets from
UCI, available at http://www.cs.waikato.ac.nz/~ml/weka/.

1 For a more detailed description of our experiments see [1].

second half of the trials. Typically training stopped after a few hundred epochs,
sometimes it took a few thousand epochs.

The results show that the performance of the p-delta rule is comparable with
that of other classification algorithms. We also found that for the tested datasets
small parallel perceptrons (n = 3) suffice for good classification accuracy.

5 Discussion

We have presented a learning algorithm — the p-delta rule — for parallel per-
ceptrons, i.e., for neural networks consisting of a single layer of perceptrons. It
presents an alternative solution to the credit assignment problem that neither
requires smooth activation functions nor the computation and communication
of derivatives. Because of the small amount of necessary communication it is ar-
gued that this learning algorithm provides a more compelling model for learning
in biological neural circuits than the familiar backprop algorithm for multi-layer
perceptrons. In fact it has already been successfully used for computer simula-
tions in that context.

We show in the full paper [1] that the parallel perceptron model is closely
related to previously studied Winner-Take-All circuits. With nearly no modifi-
cation the p-delta rule also provides a new learning algorithm for WTA circuits.

References

1. Auer, P., Burgsteiner, H. & Maass, W. The p-delta Learning Rule, submitted for
publication, http://www.igi.TUGraz.at/maass/p_delta_learning.pdf.

2. Blake, C.L. & Merz, C.J. (1998). UCI Repository of machine learning databases,
http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University of
California, Department of Information and Computer Science.

3. N. Cristianini, N., Shawe-Taylor J. (2000). An Introduction to Support Vector Ma-

chines, Cambridge University Press.
4. Freund, Y., and Schapire, R. E. (1999). Large margin classification using the Per-

ceptron algorithm, Machine Learning 37(3):277–296.
5. Guyon I., Boser B., and Vapnik V. (1993). Automatic capacity tuning of very large

VC-dimension classifiers, Advances in Neural Information Processing Systems, vol-
ume 5, Morgan Kaufmann (San Mateo) 147-155.

6. Maass, W., Natschlaeger, T., and Markram, H. (2001). Real-time computing with-

out stable status: a new framework for neural computation based on perturbations,
http://www.igi.TUGraz.at/maass/liquid_state_machines.pdf.

7. Nilsson, N. J. (1990). The Mathematical Foundations of Learning Machines, Mor-
gan Kauffmann Publishers, San Mateo (USA).

