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Experimental data have shown that synapses are heterogeneous: different
synapses respond with different sequences of amplitudes of postsynaptic
responses to the same spike train. Neither the role of synaptic dynamics
itself nor the role of the heterogeneity of synaptic dynamics for compu-
tations in neural circuits is well understood. We present in this article
two computational methods that make it feasible to compute for a given
synapse with known synaptic parameters the spike train that is optimally
fitted to the synapse in a certain sense. With the help of these methods,
one can compute, for example, the temporal pattern of a spike train (with
a given number of spikes) that produces the largest sum of postsynap-
tic responses for a specific synapse. Several other applications are also
discussed. To our surprise, we find that most of these optimally fitted
spike trains match common firing patterns of specific types of neurons
that are discussed in the literature. Hence, our analysis provides a pos-
sible functional explanation for the experimentally observed regularity
in the combination of specific types of synapses with specific types of
neurons in neural circuits.

1 Introduction

A large number of experimental studies have shown that biological synapses
have an inherent dynamics, which controls how the pattern of amplitudes
of postsynaptic responses depends on the temporal pattern of the incoming
spike train (Katz, 1966; Magleby, 1987; Markram & Tsodyks, 1996; Thom-
son, 1997; Varela et al., 1997; Dobrunz & Stevens, 1999). Various quantitative
models have been proposed (Varela et al., 1997; Abbott, Varela, Sen, & Nel-
son, 1997; Markram, Wang, & Tsodyks, 1998) involving a small number
of hidden parameters, which allow us to predict the response of a given
synapse to a given spike train once proper values for these hidden synap-
tic parameters have been found. The analysis of this article is based on
the model of Markram et al. (1998), where three parameters U, F, D control
the dynamics of a synapse. A fourth parameter A, which corresponds to
the synaptic “weight” in static synapse models, scales the absolute sizes
of the postsynaptic responses. The resulting model predicts the amplitude
Am = A · um · Rm of the postsynaptic response to the (m + 1)th spike in a
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Figure 1: (A) Synaptic heterogeneity. Shown is the distribution of values of the
parameters U, F, D for inhibitory synapses investigated in Gupta et al. (2000),
which can be grouped into three major classes: facilitating (F1), depressing (F2),
and recovering (F3). (B) Spike trains that maximize the sum of postsynaptic re-
sponses for three given synapses (T = 0.8 sec, n+1 = 15 spikes). The parameters
for synapses F̄1, F̄2, and F̄3 are the mean values for the synapse types F1, F2, and
F3 reported in Gupta et al. (2000) (see Figure 2 for numerical values).

spike train with interspike intervals (ISI’s) �0, �1, . . . , �m−1, through the
equations1

uk+1 = U + uk(1 − U) exp(−�k/F)

Rk+1 = 1 + (Rk − ukRk − 1) exp(−�k/D), (1.1)

which involve two hidden dynamic variables u ∈ [0, 1] and R ∈ [0, 1] with
the initial conditions u0 = U and R0 = 1 for the first spike. These dynamic
variables evolve in dependence of the synaptic parameters U, F, D and the
interspike intervals of the incoming spike train. It should be noted that this
deterministic model predicts the cumulative response of a population of
stochastic release sites that make up a synaptic connection. Gupta, Wang,
and Markram (2000) reported that the synaptic parameters U, F, D are quite
heterogeneous, even within a single neural circuit (see Figure 1A). Note
that the time constants D and F are in the range of a few hundred ms. The
synapses investigated in Gupta et al. (2000) can be grouped into three major
classes: facilitating (F1), depressing (F2), and recovering (F3).

In this article, we address the question which temporal pattern of a spike
train is optimally fitted to a given synapse characterized by the three param-

1 To be precise, the term ukRk in eq. 1.1 was erroneously replaced by uk+1Rk in the
corresponding equation 2 of Markram et al. (1998). The model that they actually fitted to
their data is the model considered in this article.
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eters U, F, D in a certain sense. One possible choice is to look for the temporal
pattern of a spike train that produces the largest sum

∑n
k=0 A ·uk ·Rk of post-

synaptic responses. In the original formulation of the model (Markram et al.,
1998) Am = A · um · Rm describes the amplitude of the excitatory postsynap-
tic current (or excitatory postsynaptic potential) triggered by the (m + 1)th
spike in a spike train. Hence, the larger the sum

∑n
k=0 A ·uk ·Rk is, the larger

is the net effect of the synapse on its target neuron. Another interesting
optimality criterion is the maximal integral of synaptic current. Note that
in the case where the dendritic integration is approximately linear, the two
optimality criteria maximal integral of synaptic current and maximal sum∑n

k=0 A·uk·Rk are equivalent.2 We would like to stress that the computational
methods we present are not restricted to any particular choice of the opti-
mality criterion. For example, one can use them also to compute the spike
train that produces the largest peak of the postsynaptic membrane voltage.
We defer the discussion of such alternative optimality criteria to section 4
and focus in sections 2 and 3 on the question of which temporal pattern
of a spike train produces the largest sum

∑n
k=0 A · uk · Rk of postsynaptic

responses (or, equivalently, the largest integral of postsynaptic current).
As we will discuss in section 2, there exists an algorithm to compute for a

given synapse the spike train that produces the largest sum
∑n

k=0 A · uk · Rk
exactly. Hence, such an algorithm maps each point (a given synapse) of
the parameter space (three dimensions U, F, D in our case) onto a point (a
particular spike train) in the space of spike trains (see Figure 1).

More precisely, we fix a time interval T, a minimum value �min for inter-
spike intervals (ISIs), a natural number n, and synaptic parameters U, F, D.
We then look for that spike train with n + 1 spikes during T and ISIs ≥ �min
that maximizes

∑n
k=0 A·uk ·Rk. Hence we seek a solution—that is, a sequence

of ISIs �0, �1, . . . , �n−1—to the optimization problem

maximize
n∑

k=0

A · uk · Rk

under
n−1∑
k=0

�k ≤ T and �min ≤ �k, k = 0, . . . , n − 1. (1.2)

In section 2, we present an algorithmic approach based on dynamic pro-
gramming (DP) that is guaranteed to find the optimal solution of the op-
timization problem, equation 1.2 (up to discretization errors), and exhibit
for six major types of synapses temporal patterns of spike trains that are

2 In the linear case, the synaptic current Isyn(t) can be modeled as Isyn(t) =
A

∑n
k=0 ukRkε(t − tk), with ε(t) = t

τs
exp( t

τs
+ 1) (τs synaptic time constant). Hence,∫

Isyn(t) dt = A
∑n

k=0 ukRk
∫

ε(t − tk) dt, where
∫

ε(t − tk) dt is constant if the integra-
tion time window is large enough (> 5 · τs).
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optimally fitted to these synapses. In section 3 we present a faster heuristic
method for computing optimally fitted spike trains and apply it to ana-
lyze how their temporal pattern depends on the number n + 1 of allowed
spikes during time interval T, that is, on the firing rate. Furthermore, we
analyze in section 3 how changes in the synaptic parameters U, F, D and
the spiking history affect the temporal pattern of the optimally fitted spike
train. In section 4 we discuss the application of the presented computational
methods for other optimality criteria than the maximal sum of postsynaptic
responses.

2 Computing Optimal Spike Trains for Common Types of Synapses

2.1 Dynamic Programming. For T = 1000 ms and n = 10, there are
about 2100 spike trains among which one wants to find the optimally fit-
ted one. We show that a computationally feasible solution to this complex
optimization problem can be achieved via dynamic programming. We re-
fer to Bertsekas (1995) for the mathematical background of this technique,
which also underlies the computation of optimal policies in reinforcement
learning. We consider the discrete-time dynamic system described by the
equation

x0 = 〈U, 1, 0〉 and xk+1 = f (xk, ak) for k = 0, 1, . . . , n − 1, (2.1)

where xk describes the state of the system at step k and ak is the “control” or
“action” taken at step k. In our case, xk is the triple 〈uk, Rk, tk〉 consisting of
the values of the dynamic variables u and R used to calculate the amplitude
A · uk · Rk of the (k + 1)th postsynaptic response and the time tk of the
arrival of the (k + 1)th spike at the synapse. The “action” ak is the length
�k ∈ [�min, T − tk] of the (k + 1)th ISI in the spike train that we construct,
where �min is the smallest possible size of an ISI (we have set �min =
5 ms in our computations). As the function f in equation 2.1, we take the
function that maps 〈uk, Rk, tk〉 and �k via equation 1.1 on 〈uk+1, Rk+1, tk+1〉
for tk+1 = tk + �k. The “reward” for the (k + 1)th spike is A · uk · Rk, that is,
the amplitude of the postsynaptic response for the (k + 1)th spike. Hence,
maximizing the total reward J(x0) = ∑n

k=0 A ·uk ·Rk is equivalent to solving
the maximization problem, equation 1.2. The maximal possible value of
J0(x0) can be computed exactly using the equations

Jn(xn) = A · un · Rn

Jk(xk) = max
�∈[�min,T−tk]

(A · uk · Rk + Jk+1( f (xk, �))) (2.2)

backward from k = n − 1 to k = 0. Thus, the optimal sequence a0, . . . , an−1
of “actions” is the sequence �0, . . . , �n−1 of ISIs that achieves the maximal
possible value of

∑n
k=0 A · uk · Rk. Note that the evaluation of Jk(xk) for a
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single value of xk requires the evaluation of Jk+1(xk+1) for many different
values of xk+1.

When one solves equation 2.2 on a computer, one has to replace the
continuous-state variable xk by a discrete variable x̃k and round xk+1 :=
f (x̃k, �) to the nearest value of the corresponding discrete variable x̃k+1.
This means that instead of applying equation 1.1, one updates the values of
the hidden dynamic variables u and R and the auxiliary variable tk by the
equations

ũk+1 = [U + ũk(1 − U) exp(−�k/F)]δ

R̃k+1 = [1 + (R̃k − ũk · R̃k − 1) exp(−�k/D)]δ

t̃k+1 = [t̃k + �k]�t, (2.3)

where [z]ε denotes the nearest discrete value of z with discretization interval
ε. Computer simulations (see the appendix) show that for the values of T
and n that are considered in this article, it suffices to choose a discretiza-
tion where ũk ∈ {0, δ, 2δ, . . . , 1}, R̃k ∈ {0, δ, 2δ, . . . , 1} with δ = 1/50 and
t̃k ∈ {0, �t, . . . , T} with �t = 1 ms. For this choice, the trajectory in the result-
ing discrete dynamic system, equation 2.3, approximates the trajectory in
the continuous system, equation 1.1, very well. Therefore, we have based the
computations of optimal spike trains for major synapse types that are dis-
cussed in the next paragraph on equation 2.3, with δ = 1/50 and �t = 1 ms.

2.2 Results. We have applied the dynamic programming approach to
six major types of synapses reported in Gupta et al. (2000) and Markram et
al. (1998). The results are summarized in Figure 2.

We refer informally to the temporal pattern of n + 1 spikes that max-
imizes the response of a particular synapse as the “key to this synapse.”
It is shown in Figure 3A that the “keys” for the inhibitory synapses (F̄1,
F̄2, and F̄3) are rather specific in the sense that they exhibit a substantially
smaller postsynaptic response on any other of the major types of inhibitory
synapses reported in Gupta et al. (2000).

A noteworthy—and possibly interesting—aspect of the “keys” shown
in Figure 2 (and in Figures 4 and 5) is that they correspond to common
firing patterns (accommodating, nonaccommodating, stuttering, bursting,
and regular firing) of neocortical interneurons (reported under controlled
conditions in vitro; Gupta et al., 2000, Fig. 5). For example, the optimal spike
trains for synapses F̄2 and F̄3 are similar to the output of a stuttering cell. In
the same manner, one can classify the optimal spike trains for synapses F̄1
and E3 as accommodating (see also Figure 4).

Another interesting effect arises by comparing the optimal values of the
sum

∑n
k=0 uk ·Rk for synapses F̄1, F̄2, and F̄3 (see Figure 3B) with the maximal

values of
∑n

k=0 A · uk · Rk (see Figure 3C), where we have set A equal to the
value of Gmax reported in Gupta et al. (2000, Table 1). Whereas the values of
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F̄1 0.16 376 45
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F̄3 0.32 62 144

E1 0.03 530 130

E2 0.03 3000 600

E3 0.12 3900 30
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Figure 2: Spike trains that maximize the sum of postsynaptic responses for six
common types of synapses (T = 1 sec, 20 spikes). The parameters (D and F in
ms) for synapses F̄1, F̄2, and F̄3 are the mean values for the synapse types F1, F2,
and F3 reported in Gupta et al. (2000, Table 1). Parameters for synapses E1, E2,
and E3 are taken from Markram et al. (1998, Fig. 3).
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Figure 3: (A) Specificity of optimal spike trains. The optimal spike trains for
synapses F̄1, F̄2, and F̄3 (denoted by K1, K2, and K3, respectively) obtained for
T = 1 sec and 10 spikes (see the bottom traces in Figure 4) are tested on the
other two types of synapses. Plotted is the value of the sum of the postsynaptic
response of each synapse F̄i to spike train Kj with j �= i in relation to its response
to Ki. The plotted values are normalized to have value 1 for the pairs 〈Ki,F̄i〉,
i = 1, 2, 3. (B) Absolute values of the sums

∑n
k=0 uk · Rk if the spike train Ki

is applied to synapse F̄i, i = 1, 2, 3. (C) Same as B except that the value of
A · ∑n

k=0 uk · Rk is plotted. For A we used the value of Gmax (in nS) reported in
Gupta et al. (2000, Table 1). The quotient max/min is 1.3 compared to 2.13 in B.
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Gmax vary strongly among different synapse types, the resulting maximal
response of a synapse to its proper “key” is almost the same for each synapse.
Hence, one may speculate that the system is designed in such a way that each
synapse should have an equal influence on the postsynaptic neuron when
it receives its optimal spike train. This effect is most evident for a spiking
frequency (n + 1)/T of 10 Hz and vanishes for frequencies above 20 Hz.

3 Exploring the Parameter Space

3.1 Sequential Quadratic Programming. The numerical approach for
approximately computing optimal spike trains that was used in section 2
is sufficiently fast that an average PC can carry out any of the computa-
tions whose results were reported in Figure 2 within a few hours. To be
able to address computationally more expensive issues, we used a nonlin-
ear optimization algorithm known as sequential quadratic programming
(SQP),3 which is the state-of-the-art approach for heuristically solving con-
strained optimization problems such as equation 1.2. (See Powell, 1983,
for the mathematical background of this technique.) Applying this algo-
rithm requires calculating the partial derivatives δ J

δ �i
of the objective func-

tion J(�0, . . . , �n−1) = ∑n
k=0 uk · Rk with respect to �i for i = 0, . . . , n − 1.

The calculations of these partial derivatives are found in the appendix. To
compute an optimal spike train, we perform 100 runs of the SQP algorithm
with different random initializations and select the result with the highest
value of

∑n
k=0 ukRk.

Unfortunately, the SQP algorithm is not guaranteed to find the opti-
mal spike train, even if the numerical precision is sufficiently high, since
it could in principle get stuck in local extrema. However, in all our tests,
SQP has produced within a few minutes of computation time a solution
that is very close to the spike train computed by the more rigorous dynamic
programming approach (for comparison, see the spike trains marked by a
gray background in Figure 4). This observation suggests that SQP tends to
find near to optimal solutions to the optimization problem, equation 1.2.4

3.2 Optimal Spike Trains for Different Firing Rates. First we used SQP
to explore the effect of the spike frequency (n+1)/T on the temporal pattern
of the optimal spike train. For the synapses F̄1, F̄2, and F̄3, we computed
the optimal spike trains for frequencies ranging from 10 Hz to 35 Hz. The

3 We used the implementation (function constr) contained in the MATLAB Optimiza-
tion Toolbox (see http://www.mathworks.com/products/optimization/).

4 The deviations between the solutions of SQP and DP also originate in part from
the fact that SQP is applied to the continuous model, equation 1.1, whereas DP has to be
applied to the discrete model, equation 2.3. A useful consequence is that if the DP solution
is used as initialization for the SQP algorithm, one can sometimes improve the DP solution
slightly.
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Figure 4: Dependence of the optimal spike train on the spike frequency (n+1)/T
(T = 1 sec, n + 1 = 10, . . . , 35). For each of the synapses F̄1, F̄2, and F̄3, the
optimal spike train is plotted for different frequencies (from 10 Hz to 35 Hz). To
compare the solutions of SQP and DP, we also show as an example the solution
for 20 Hz obtained by DP (spike trains labeled DP), which occurred already in
Figure 2.

results are summarized in Figure 4. For synapses F̄1 and F̄2, the characteristic
spike pattern (F̄1 . . . accommodating, F̄2 . . . stuttering) is the same for all
frequencies. In contrast, the optimal spike train for synapse F̄3 has a phase
transition from stuttering to nonaccommodating at about 20 Hz.

3.3 The Impact of Individual Synaptic Parameters. We now address
the question how the optimal spike train depends on the individual synap-
tic parameters U, F, and D. Since the parameters D and F of synapse F̄3 lie
between the D− and F−values of synapses F̄1 and F̄2, it is not surprising that
the most interesting effects occur when one changes U, F, D in the vicinity
of the parameters of synapse F̄3. The results are summarized in Figure 5,
which shows that the optimal spike train moves through the same temporal
patterns (even in the same order), no matter which of the three parameters
is varied. Another interesting observation is that the sum of postsynaptic
responses (gray horizontal bars in Figure 5) depends primarily on the tem-
poral pattern of the optimal spike train and not that much on the actual
values of U, F, D for which this pattern is optimal.

We have marked in Figure 5 the range of parameters for synapses of
type F3 reported in Gupta et al. (2000, Table 1) with a black bar (the pa-
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Figure 5: Dependence of the optimal spike train on the synaptic parameters
U, F, D. Each panel shows how the optimal spike train changes if one parameter
is varied. The other two parameters are set to the value corresponding to synapse
F̄3 (see Figure 2). The black bar to the left marks the range of values (mean ±std)
reported in Gupta et al. (2000) for the parameter that varies. To the right of each
spike train we plotted the corresponding value of J = ∑n

k=0 ukRk (gray bars).

rameters of synapse F̄3 are the reported mean values for synapses of type
F3). Within this parameter range, we find stuttering and nonaccommodat-
ing spike patterns, with a phase transition right in the middle. We also
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calculated the optimal spike trains for the range of parameters U, F, D for
synapses of the types F1 and F2 reported in Gupta et al. (2000, Table 1) (re-
sults not shown in this article). We found that the temporal pattern of the
optimal spike train for the variations within the class of F1 (F2) synapses is
always of class accommodating (stuttering).

3.4 Influence of the Spiking History. So far we had implicitly as-
sumed—through the initial conditions u0 = U and R0 = 1—that the in-
put spike train follows a long period of complete presynaptic inactivity.
However, initial conditions other than u0 = U and R0 = 1 can account
for an arbitrary spiking history of the synapse under consideration. This
is due to the fact that an arbitrary spike train with (m + 1) spikes and ISIs
�0, �1, . . . , �m−1 yields certain values um and Rm of the hidden dynamic
variables u and R. Thus, using these values as initial values u0 and R0 in
our computation of an optimal fitted spike train, we effectively compute
the optimally fitted spike train after the synapse had previously received a
spike train with ISIs �0, �1, . . . , �m−1.5

Figure 6 shows the impact of different initial conditions u0 and R0 on
the optimally fitted spike train for synapse F̄3. The basic firing pattern
(nonaccommodating) does not change, but the onset of firing is delayed.
The amount of delay increases with the level of depression (low R0) and
increasing u0 (fraction of resources used per spike). This also holds for the
synapses F̄1 and F̄2 (results not shown). Note that the resulting optimal
spike trains for u0, R0 < 1 match another family of firing patterns: delayed
discharge (see column 3 of Figure 5 in Gupta et al., 2000).

4 Other Optimality Criteria

In this section, we discuss the application of the computational methods
we have introduced to the computation of spike trains that are optimally
fitted to a given synapse in a sense other than that discussed in the previous
sections (largest sum

∑n
k=0 A·uk ·Rk). A list of alternative criteria with respect

to which a spike train can be defined as optimal for a given synapse may
include the following:

A. Maximal amplitude of a certain (e.g., the last (i = n)), postsynaptic
response:

maximize ui · Ri (4.1)

B. Maximal amplitude of the largest postsynaptic response:

maximize max
0≤k≤n

{uk · Rk} (4.2)

5 Due to this notation, the first spike of each optimally fitted spike train should be in-
terpreted as the (m+1) spike of the spiking history described by the ISIs �0, �1, . . . , �m−1.
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Figure 6: Dependence of the optimal spike train of synapse F̄3 (see Figure 2 for
parameter values) on the initial values u0 and R0. Each panel shows how the
optimal spike train changes if one value is varied. The other value holds constant.

C. Maximal peak of postsynaptic membrane potential V(t)6:

maximize max
0≤t≤T

{V(t)} (4.3)

6 The membrane voltage V(t) can be modeled by τm
d V(t)

d t = −V(t) + Isyn(t), where
τm = 50 ms is the membrane time constant and Isyn(t) = A · ∑n

k=0 uk · Rk · ε(t − tk) is the
synaptic current, with ε(t) = t

τs
e(−t/τs+1) and τs = 2 ms. tk denotes the time of the (k + 1)th

spike in the input spike train.
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D. Maximal specificity of several spike trains among several synapses:

maximize
∑

1≤i≤l

cii −
∑

1≤i�=j≤l

cij (4.4)

where cij are the values of a specificity matrix C = [cij]1≤i,j≤l, an exam-
ple of which is shown in Figure 3. Note that here l spike trains (one
for each synapse) are computed simultaneously.

As before these criteria are considered under the constraints
∑n−1

k=0 �k ≤
T and �min ≤ �k, k = 0, . . . , n − 1.

In principle, the DP approach would allow computing the exact solution
for all of the corresponding constrained optimization problems. However,
one has to cope with the problem that the dimension of the state variables xk
(see equation 2.1) has to be enlarged to incorporate additional information
(e.g., the current maximum or the current membrane potential). This has
the fatal consequence that it is impossible to run the DP algorithm on an
average PC.

Fortunately, it is rather straightforward to adapt the SQP approach to
these other optimization problems. Note, however, that for criteria B and
C, an analytical form of the partial derivatives δ J

δ �i
, i = 0, . . . , n − 1 of

the corresponding objective function J(�0, . . . , �n−1) in general cannot be
obtained. But the partial derivatives δ J

δ �i
are piecewise continuous and can

be approximated numerically (by a finite difference quotient) quite well.
The optimally fitted spike trains for synapses F̄1, F̄2, and F̄3 for each of

the above optimality criteria obtained with the SQP algorithm are shown in
Figure 7.

Figure 7: Facing page. Optimally fitted spike trains for synapses F̄1, F̄2, and F̄3 for
the four other optimality criteria. (A1) Spike trains for T = 0.5 sec and 10 spikes,
which maximize the amplitude of the last synaptic response. The amplitude
uk · Rk is represented by the height of the (k + 1)th vertical line. (A2) Shows (for
the same optimization criterion) the dependence of the maximally achievable
amplitude of the synaptic response for the last spike on the number of spikes in
the spike train. (B1) Same as A1 but spike trains maximize the amplitude of the
largest synaptic response. (B2) Same as A2, but for this different optimization
criterion. Amplitude of the largest synaptic response for different numbers of
spikes. (C1) Same as A1, but spike trains maximize the peak of the postsynaptic
membrane potential (for a given number of spikes). (C2) Postsynaptic poten-
tial V(t) corresponding to the optimal spike trains shown in C1 (vertical scale
depends on actual electrophysiological parameters). (D1) The three spike trains
shown (K1, K2, and K3) maximize the specificity (see equation 4.4) among the
synapses F̄1, F̄2, and F̄3. (D2) Specificity matrix for the spike trains shown in D1.
For details, see equation 4.4 and Figure 3.
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In the following, we provide some remarks regarding the results:

A1 and A2. Note that the resulting optimal temporal pattern of the
spike trains happens to be similar to the protocol used for determining
synapse types in Gupta et al. (2000).
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B1 and B2. For synapse F̄1, the last synaptic response also has the
largest amplitude. For F̄2 and F̄3, the second spike always triggers the
largest synaptic response.

C1 and C2. For synapse F̄1, a burst with frequency lower than 1/�min
yields the largest peak in postsynaptic potential. Note that for F̄2 and
F̄3, the spikes occurring after the peak in the membrane voltage are
arbitrarily positioned in time.

D1 and D2. A comparison of the spike trains shown in Figure 7, D1,
and Figure 2 shows that the qualitative nature of the spike trains is
very similar and that the specificity shown in Figure 3 is very similar
to the optimal specificity shown in Figure 7, D2.

5 Discussion

We have presented two complementary computational approaches for com-
puting spike trains that optimize a given response criterion for a given
synapse. One of these methods is based on dynamic programming (similar
as in reinforcement learning), the other on sequential quadratic program-
ming.

Recent studies (Gupta et al., 2000) indicate that GABAergic synapses in
neocortical layers II to IV belong to one of three major classes, called F1-,
F2-, and F3-type synapses, respectively. It turns out that the spike trains that
maximize the response of these types of synapses are well-known firing pat-
terns (accommodating, nonaccommodating, stuttering, bursting, and regu-
lar firing) of specific neuron types. For F1- and F3-type synapses, the optimal
spike train agrees with the most often found firing pattern of presynaptic
neurons reported in Gupta et al. (2000), whereas for F2-type synapses, there
is no such agreement.

Note, however, that the firing pattern of interneurons reported in Gupta
et al. (2000) were obtained in cortical interneurons in vitro following in-
jection of current steps and may or may not represent how these neurons
discharge in vitro. There are also many in vivo studies of discharge charac-
teristics of classes of cortical neurons (Steriade, Timofeev, Dürmüller, & Gre-
nier, 1998; Gray & McCormick, 1996). Steriade et al. (1998) report a class of
neurons—so-called fast-rhythmic bursting (FRB) neurons—with discharge
patterns (in response to current injection) that have similar properties as the
optimal spike train for synapse F̄2 shown in Figure 2: rhythmic bursts with
a very high intraburst frequency. If the current injection into FRB neurons is
increased, the number of bursts, as well as the number of spikes per burst,
increases as well. This is also characteristic for the optimal spike train for
synapse F̄2 (see Figure 4) if the spike frequency (n+1)/T is increased. Hence,
a synapse of the F2-type would filter the spike train in such a way that FRB
neurons have the maximal possible impact on a target neuron over a broad
range of firing frequencies. On the other hand Gray and McCormick (1996)
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Figure 8: Preferential addressing of postsynaptic targets. Due to the specificity
of the optimal spike train of a synapse, a presynaptic neuron may address (i.e.,
evoke stronger response at) either neuron A or B, depending on the temporal
pattern of the spike train (with the same frequency f = (n + 1)/T) it produces
(T = 0.8 sec and (n + 1) = 15 spikes in this example).

report a class of neurons called “chattering cells” that display discharge of
repeated (80 Hz) brief (5 spikes) high-frequency (800 Hz) bursts. We have not
yet seen such spiking patterns in our studies (even if we use �min = 1 ms).
This is probably due to the fact that the synapse model we used (Markram
et al., 1998) was derived and validated for synapses of neurons that show
much lower firing frequencies. These observations show that our new com-
putational techniques provide tools for analyzing the possible functional
role of the specific combinations of synapse types and neuron types that
was recently found in Gupta et al. (2000).

Another noteworthy aspect of the optimal spike trains is their specificity
for a given synapse (see Figure 3); suitable temporal firing patterns acti-
vate preferentially specific types of synapses. One may speculate that due
to this feature, a neuron can activate a particular subpopulation of its target
neurons by generating a series of action potentials (of a fixed mean fre-
quency) with a suitable temporal pattern (see Figure 8 for an illustration).
Recent experiments (Wang & McCormick, 1993; Brumberg, Nowak, and
McCormick, 2000) show that neuromodulators can control the firing mode
of cortical neurons. Wang and McCormick (1993) show that bursting neu-
rons may switch to regular firing if norepinephine is applied. Together with
the specificity of synapses to certain temporal patterns, these findings point
to one possible mechanism how neuromodulators can change the effective
connectivity of a neural circuit. Furthermore, we have shown in section 4
(see Figure 7, D2) that for the types of synapses discussed in Gupta et al.
(2000), spike trains that maximize the response of any single one of these
synapses have already close to the optimal specificity.

Our analysis provides the platform for a deeper understanding of the
specific role of different synaptic parameters, because with the help of the
computational techniques that we have introduced, one can now see directly
how the temporal structure of the optimal spike train for a synapse depends
on the individual synaptic parameters. We believe that this inverse analysis
is essential for understanding the computational role of neural circuits.
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Figure 9: Impact of discretization for dynamic programming. For different
synapses (see Figure 2 for parameters), we plotted the average mean absolute
error (mae) between the trajectory of the discrete and the continuous model for
various levels of discretization intervals δ = 1/N (for details, see the text).

Appendix A: Impact of Discretization for Dynamic Programming

To assess the influence of the degree of discretization on the trajectory of
the synaptic model, we measured the mean absolute error 1

n+1
∑n

k=0 |ukRk −
ũkR̃k| between the trajectory of the discrete model, equation 3.3, and the
continuous model, equation 1.1. For each synapse type, we calculated the
mean absolute error as an average over 1000 Poisson spike trains consisting
of 20 spikes and a mean frequency of 20 Hz. The calculations were performed
for various discretization intervals δ = 1/N. The results are summarized in
Figure 9. We used N = 50 for the computations in section 3.

Appendix B: Partial Derivatives of the Objective Function for Use with
SQP

In this section we give a calculation of the partial derivatives δ J
δ �i

, i =
0, . . . , n − 1 of the objective function J(�0, . . . , �n−1) = ∑n

k=0 AukRk. Ob-
viously one has to calculate the derivatives δ ukRk

δ �i
for k = 0, . . . , n and

i = 0, . . . , n − 1. For k ≤ i, one has δ ukRk
δ �i

= 0 since �i influences only
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uk and Rk if k > i. In that case (k > i) one gets

δ ukRk

δ �i
= δ uk

δ �i
Rk + δ Rk

δ �i
uk

= δ uk

δ uk−1
· δ uk−1

δ �i
· Rk +

(
δ Rk

δ uk−1
· δ uk−1

δ �i
+ δ Rk

δ Rk−1
· δ Rk−1

δ �i

)
uk

with

δ uk

δ uk−1
= (1 − U) exp(−�k−1/F) ,

δ Rk

δ uk−1
= −Rk−1 exp(−�k−1/D) , and

δ Rk

δ Rk−1
= (1 − uk−1) exp(−�k−1/D) .

Hence,

δ uk

δ �i
= δ uk

δ uk−1
· δ uk−1

δ �i
and

δ Rk

δ �i
= δ Rk

δ uk−1
· δ uk−1

δ �i
+ δ Rk

δ Rk−1
· δ Rk−1

δ �i

can be calculated from δ uk−1
δ �i

and δ Rk−1
δ �i

. Hence, starting with the equations

δ ui+1

δ �i
= − 1

F
ui(1 − U)e−�i/F = U − ui+1

F
δ Ri+1

δ �i
= − 1

D
(Ri − uiRi − 1)e−�i/F = 1 − Ri+1

D
,

the calculation of δ ukRk
δ �i

for k > i is rather straightforward.
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