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A COUNTABLE BASIS FOR =} SETS
AND RECURSION THEORY ON &,

WOLFGANG MAASS'

ABSTRACT. Countably many N,-recursively enumerable sets are constructed from
which all the 8,-recursively enumerable sets can be generated by using countable
union and countable intersection. This implies under ¥ = L that there exists as
well a countable basis for ! sets of reals, n > 2. Further under ¥ = L the lattice
&*(¥)) of 8,-recursively enumerable sets modulo countable sets has only ¥, many
automorphisms.

Let & denote the lattice of recursively enumerable (r.e.) sets under inclusion, and
let &* denote the quotient lattice of & modulo the ideal of finite sets. Both
structures have been extensively studied (see e.g. the survey by Soare [5]). In recent
years research has concentrated on the existence of automorphisms and the
decidability of the elementary theory.

Analogous questions arise in a-recursion theory for admissible ordinals a. Here
one studies the lattice & (a) of a-r.e. subsets of a and the quotient lattice & *(a)
modulo the ideal of a*-finite sets (see e.g. the survey by Lerman [2]). A set is a-T.e.
iff it is definable over L, by some =, formula with parameters. A function is
a-recursive iff its graph is a-r.e. A set is a*-finite iff every a-r.e. subset of it is
a-recursive. For simplicity we assume V' = L in the first part of this paper where
we study N,-r.e. sets.

Lachlan has proved the following basic result about automorphisms of & * (see
Soare [4]): There are 2* automorphisms of & *. Sutner [7] has noticed that one can
use Lachlan’s construction in order to show that for all countable admissible a
there are 2" many automorphisms of & *(a). The argument breaks down for
a = N, despite the fact that 8, is like w a regular cardinal. Observe that in the case
a = N, the a*-finite sets are just the countable sets. We show in this paper that
there are in fact only 8, (instead of 2") many automorphisms of & *(®).

DerFmNITION 1. We say that a class T' of sets has a countable basis (4,),c, if
{4,Jn € w} CT and T is the closure of {A4,|n € w} under countable unions and
intersections. -

Observe that the class of §,-r.e. sets is closed under countable unions and
intersections.
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THEOREM 2. The class of N,-r.e. sets has a countable basis (A,),c,- In fact every
N,-r.e. set can be written as a countable intersection of countable unions of countable
intersections of the sets (4,),c.-

PROOF. Take a universal 8,-r.e. set W such that (W,), <., is an enumeration of
all 8 -r.e. sets, where W, = {8|<e, §) € W}. Further take an 8,-recursive func-
tion C from 8, into ¥ (w) such that {C(e)|le € R,} is a family of almost disjoint
sets (i.e. every C(e) is infinite and C(e) N C(¢’) is finite for e #* ¢/, see e.g. Kunen
[1D.

We construct first countably many N,-r.e. sets (4,), <., such that for every e € N,
withe > w

W,_,—e=(U (N {4,n € Cle) An >j}))—e.
JEw
The sets (4,),c,, are constructed simultaneously in 8, many steps. At step y we
determine for every n on which fact it depends whether or not y is enumerated in
A,
We assign in an N,-recursive way to every y € 8, a function p, € L, which
maps w one-one onto y + 1. For e < y one might consider p !(e) as the priority of
the equality W, = U,;,(N {A4,|n € C(e) A\ n > j}) at step y. We change priorities
at every step because it is important that the priority list is never longer than w.

Step v (w <y < N)). For n € C(p,(0)) we determine that y is put in 4, if and
only if y is enumerated in W, . Forj > 0 and n € (C(p,(/)) — U;; C(p,(JM
we determine that y is put in 4, if and only if y is enumerated in W,y For
n € w— U,, C(e) it does not matter whether we put y in 4, or not.

It is obvious from the construction that the sets 4, are ®,-r.e. Further for

w < e <y wehave

Yy E U(ﬂ {A,|n € C(e) An >j})

JEw
sve N {4, € Cle) An

> max(C(e) n (U {(C@)lpy(e) <(e)})))
.S YEW,

So far we cannot generate every set W, with countable unions and intersections
from the basis elements without making mistakes at countably many points.
Therefore we add countably many further 8,-r.e. sets to the constructed basis
elements (4,),c, Which enable us to correct these mistakes. Let f be an N, -recur-
sive function which maps &, one-one into & (w). Define 8,-recursive sets (R,),c,,
by Yy € R,: © n € f(y). We add then the sets (R,),e, and (N, — R,),c, to the
basis. For every y € R, we have

{Y}= m Rnn n (Nl—Rn)'

nEf(y) n&f(y)
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Thus we can write every countable set as a countable union of countable intersec-
tions and the complement of every countable set as a countable intersection of
countable unions of basis elements. Therefore we can correct every mistake on
countably many points.

COROLLARY 3. There are N, automorphisms of & *(N)).

PROOF. It is obvious that one can construct &, many N,-recursive permutations
of 8, which induce different automorphisms of & *(¥,). On the other hand every
automorphism ® of & *(N,) preserves countable unions and intersections. There-
fore @ is completely determined by the values (®(4})), ., Where (4,),c,, is a basis
for the N -r.e. sets and (4}),c, are the corresponding equivalence classes in
& *(N)).

We now leave a-recursion theory and the assumption ¥ = L and turn to
descriptive set theory in ZFC. It makes sense to ask whether the classes = and II.
have a countable basis according to Definition 1 since these classes are closed
under countable union and intersection. Obviously if =} has a countable basis then
the complements of the basis elements form a basis for I} and vice versa. Observe
that A}, the class of Borel sets, has a countable basis. If one chooses suitable basis
elements one can generate the Borel hierarchy without using complementation.

COROLLARY 4. Assume n > 2 and “w C L[a] for some a Cw. Then X! has a
countable basis.

ProoF. It is well known that for every m > 1 a subset of “w is T}, , iff it is X,
definable over HC. Under the assumption “w C L[a] we have HC = HCH9l =
L, [a]. Thus the =] sets are just the sets which are =, definable over L, [a] and for
m > 2 the £} | sets are just the sets which are =, definable over (Lyfa), &, P,>
with a suitable mastercode P,,. Since one can define a map which maps “w one-one
onto 8, by a A, definition over L, [a], it does not matter whether one considers
subsets of “w or of N,. Further the construction of a countable basis in the proof of
Theorem 2 works as well for L, [a] and {L,|[a], ¢, P, instead of L,, .

REMARK 5. Richard Mansfield has shown [3] that any countably generated
o-algebra consisting entirely of Lebesgue measurable sets does not contain all =}
sets. Therefore =) has no countable basis in the sense of Definition 1 if all =! sets
are measurable. This implies that X, never has a countable basis. Further,
Solovay’s model of ZFC where all projective sets are measurable [6] supplies an
example where no Z} has a countable basis.

In addition Mansfield has given a complete answer for Z}: If X} has a countable
basis then “w C L[a] for some a C w (to appear).
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