PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 82, Number 2, June 1981

A COUNTABLE BASIS FOR Σ_2^1 SETS AND RECURSION THEORY ON \aleph_1

WOLFGANG MAASS¹

ABSTRACT. Countably many \aleph_1 -recursively enumerable sets are constructed from which all the \aleph_1 -recursively enumerable sets can be generated by using countable union and countable intersection. This implies under V = L that there exists as well a countable basis for Σ_n^l sets of reals, n > 2. Further under V = L the lattice $\mathfrak{S}^*(\aleph_1)$ of \aleph_1 -recursively enumerable sets modulo countable sets has only \aleph_1 many automorphisms.

Let \mathscr{E} denote the lattice of recursively enumerable (r.e.) sets under inclusion, and let \mathscr{E}^* denote the quotient lattice of \mathscr{E} modulo the ideal of finite sets. Both structures have been extensively studied (see e.g. the survey by Soare [5]). In recent years research has concentrated on the existence of automorphisms and the decidability of the elementary theory.

Analogous questions arise in α -recursion theory for admissible ordinals α . Here one studies the lattice $\mathcal{E}(\alpha)$ of α -r.e. subsets of α and the quotient lattice $\mathcal{E}^*(\alpha)$ modulo the ideal of α^* -finite sets (see e.g. the survey by Lerman [2]). A set is α -r.e. iff it is definable over L_{α} by some Σ_1 formula with parameters. A function is α -recursive iff its graph is α -r.e. A set is α^* -finite iff every α -r.e. subset of it is α -recursive. For simplicity we assume V = L in the first part of this paper where we study \aleph_1 -r.e. sets.

Lachlan has proved the following basic result about automorphisms of \mathfrak{S}^* (see Soare [4]): There are 2^{\aleph_0} automorphisms of \mathfrak{S}^* . Sutner [7] has noticed that one can use Lachlan's construction in order to show that for all countable admissible α there are 2^{\aleph_0} many automorphisms of $\mathfrak{S}^*(\alpha)$. The argument breaks down for $\alpha = \aleph_1$ despite the fact that \aleph_1 is like ω a regular cardinal. Observe that in the case $\alpha = \aleph_1$ the α^* -finite sets are just the countable sets. We show in this paper that there are in fact only \aleph_1 (instead of 2^{\aleph_1}) many automorphisms of $\mathfrak{S}^*(\aleph_1)$.

DEFINITION 1. We say that a class Γ of sets has a countable basis $(A_n)_{n \in \omega}$ if $\{A_n | n \in \omega\} \subseteq \Gamma$ and Γ is the closure of $\{A_n | n \in \omega\}$ under countable unions and intersections.

Observe that the class of \aleph_1 -r.e. sets is closed under countable unions and intersections.

© 1981 American Mathematical Society 0002-9939/81/0000-0271/\$02.00

Received by the editors June 10, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 03D60; Secondary 03E15, 03D25.

Key words and phrases. α -recursively enumerable sets, automorphisms of r.e. sets, countable unions and intersections of Σ_2^1 -sets.

¹During preparation of this paper the author was supported by the Heisenberg Programm der Deutschen Forschungsgemeinschaft, West Germany.

WOLFGANG MAASS

THEOREM 2. The class of \aleph_1 -r.e. sets has a countable basis $(A_n)_{n \in \omega}$. In fact every \aleph_1 -r.e. set can be written as a countable intersection of countable unions of countable intersections of the sets $(A_n)_{n \in \omega}$.

PROOF. Take a universal \aleph_1 -r.e. set W such that $(W_e)_{\omega \leq e \leq \aleph_1}$ is an enumeration of all \aleph_1 -r.e. sets, where $W_e := \{\delta | \langle e, \delta \rangle \in W\}$. Further take an \aleph_1 -recursive function C from \aleph_1 into $\mathfrak{P}(\omega)$ such that $\{C(e) | e \in \aleph_1\}$ is a family of almost disjoint sets (i.e. every C(e) is infinite and $C(e) \cap C(e')$ is finite for $e \neq e'$, see e.g. Kunen [1]).

We construct first countably many \aleph_1 -r.e. sets $(A_n)_{n \in \omega}$ such that for every $e \in \aleph_1$ with $e \ge \omega$

$$W_e - e = \left(\bigcup_{j \in \omega} \left(\bigcap \{A_n | n \in C(e) \land n \ge j\}\right) \right) - e.$$

The sets $(A_n)_{n \in \omega}$ are constructed simultaneously in \aleph_1 many steps. At step γ we determine for every *n* on which fact it depends whether or not γ is enumerated in A_n .

We assign in an \aleph_1 -recursive way to every $\gamma \in \aleph_1$ a function $p_{\gamma} \in L_{\aleph_1}$ which maps ω one-one onto $\gamma + 1$. For $e \leq \gamma$ one might consider $p_{\gamma}^{-1}(e)$ as the priority of the equality $W_e = \bigcup_{j \in \omega} (\bigcap \{A_n | n \in C(e) \land n > j\})$ at step γ . We change priorities at every step because it is important that the priority list is never longer than ω .

Step γ ($\omega \leq \gamma < \aleph_1$). For $n \in C(p_{\gamma}(0))$ we determine that γ is put in A_n if and only if γ is enumerated in $W_{p_{\gamma}(0)}$. For j > 0 and $n \in (C(p_{\gamma}(j)) - \bigcup_{j' < j} C(p_{\gamma}(j')))$ we determine that γ is put in A_n if and only if γ is enumerated in $W_{p_{\gamma}(j)}$. For $n \in \omega - \bigcup_{e \leq \gamma} C(e)$ it does not matter whether we put γ in A_n or not.

It is obvious from the construction that the sets A_n are \aleph_1 -r.e. Further for $\omega \leq e < \gamma$ we have

$$\begin{split} \gamma &\in \bigcup_{j \in \omega} \Big(\bigcap \{A_n | n \in C(e) \land n \ge j\} \Big) \\ &\Leftrightarrow \gamma \in \bigcap \{A_n | n \in C(e) \land n \\ &> \max \Big(C(e) \cap \Big(\bigcup \{(C(e')) | p_{\gamma}(e') < p_{\gamma}(e)\} \Big) \Big) \Big\} \\ &\downarrow \Leftrightarrow \gamma \in W_e. \end{split}$$

So far we cannot generate every set W_e with countable unions and intersections from the basis elements without making mistakes at countably many points. Therefore we add countably many further \aleph_1 -r.e. sets to the constructed basis elements $(A_n)_{n \in \omega}$ which enable us to correct these mistakes. Let f be an \aleph_1 -recursive function which maps \aleph_1 one-one into $\mathfrak{P}(\omega)$. Define \aleph_1 -recursive sets $(R_n)_{n \in \omega}$ by $\gamma \in R_n$: $\Leftrightarrow n \in f(\gamma)$. We add then the sets $(R_n)_{n \in \omega}$ and $(\aleph_1 - R_n)_{n \in \omega}$ to the basis. For every $\gamma \in \aleph_1$ we have

$$\{\gamma\} = \bigcap_{n \in f(\gamma)} R_n \cap \bigcap_{n \notin f(\gamma)} (\aleph_1 - R_n).$$

Thus we can write every countable set as a countable union of countable intersections and the complement of every countable set as a countable intersection of countable unions of basis elements. Therefore we can correct every mistake on countably many points.

COROLLARY 3. There are \aleph_1 automorphisms of $\mathcal{S}^*(\aleph_1)$.

PROOF. It is obvious that one can construct \aleph_1 many \aleph_1 -recursive permutations of \aleph_1 which induce different automorphisms of $\mathscr{E}^*(\aleph_1)$. On the other hand every automorphism Φ of $\mathscr{E}^*(\aleph_1)$ preserves countable unions and intersections. Therefore Φ is completely determined by the values $(\Phi(A_n^*))_{n \in \omega}$, where $(A_n)_{n \in \omega}$ is a basis for the \aleph_1 -r.e. sets and $(A_n^*)_{n \in \omega}$ are the corresponding equivalence classes in $\mathscr{E}^*(\aleph_1)$.

We now leave α -recursion theory and the assumption V = L and turn to descriptive set theory in ZFC. It makes sense to ask whether the classes Σ_n^1 and Π_n^1 have a countable basis according to Definition 1 since these classes are closed under countable union and intersection. Obviously if Σ_n^1 has a countable basis then the complements of the basis elements form a basis for Π_n^1 and vice versa. Observe that Δ_1^1 , the class of Borel sets, has a countable basis. If one chooses suitable basis elements one can generate the Borel hierarchy without using complementation.

COROLLARY 4. Assume $n \ge 2$ and $\omega \subseteq L[a]$ for some $a \subseteq \omega$. Then Σ_n^1 has a countable basis.

PROOF. It is well known that for every $m \ge 1$ a subset of ω_{ω} is Σ_{m+1}^{1} iff it is Σ_{m} definable over HC. Under the assumption $\omega_{\omega} \subseteq L[a]$ we have HC = HC^{L[a]} = $L_{\kappa_{1}}[a]$. Thus the Σ_{2}^{1} sets are just the sets which are Σ_{1} definable over $L_{\kappa_{1}}[a]$ and for $m \ge 2$ the Σ_{m+1}^{1} sets are just the sets which are Σ_{1} definable over $\langle L_{\kappa_{1}}[a], \varepsilon, P_{m} \rangle$ with a suitable mastercode P_{m} . Since one can define a map which maps ω_{ω} one-one onto \aleph_{1} by a Δ_{1} definition over $L_{\kappa_{1}}[a]$, it does not matter whether one considers subsets of ω_{ω} or of \aleph_{1} . Further the construction of a countable basis in the proof of Theorem 2 works as well for $L_{\kappa_{1}}[a]$ and $\langle L_{\kappa_{1}}[a], \varepsilon, P_{m} \rangle$ instead of $L_{\kappa_{1}}$.

REMARK 5. Richard Mansfield has shown [3] that any countably generated σ -algebra consisting entirely of Lebesgue measurable sets does not contain all Σ_1^1 sets. Therefore Σ_n^1 has no countable basis in the sense of Definition 1 if all Σ_n^1 sets are measurable. This implies that Σ_1^1 never has a countable basis. Further, Solovay's model of ZFC where all projective sets are measurable [6] supplies an example where no Σ_n^1 has a countable basis.

In addition Mansfield has given a complete answer for Σ_2^1 : If Σ_2^1 has a countable basis then $\omega \subseteq L[a]$ for some $a \subseteq \omega$ (to appear).

References

1. K. Kunen, Combinatorics, Handbook of Mathematical Logic (J. Barwise, Ed.), North-Holland, Amsterdam, 1977.

2. M. Lerman, Lattices of α -recursively enumerable sets, Proc. Second Sympos. Generalized Recursion Theory (Oslo, 1977), North-Holland, Amsterdam, 1978.

3. R. Mansfield, The solution to one of Ulam's problems concerning analytic sets. II, Proc. Amer. Math. Soc. 26 (1970), 539-540.

WOLFGANG MAASS

4. R. I. Soare, Automorphisms of the lattice of recursively enumerable sets. I, Maximal sets, Ann. of Math. (2) 100 (1974), 80-120.

5. _____, Recursively enumerable sets and degrees, Bull. Amer. Math. Soc. 84 (1978), 1149-1181.

6. R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1-56.

7. K. Sutner, Automorphisms of α -recursively enumerable sets, Diplomarbeit an der Universität München, 1979.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MAS-SACHUSETTS 02139