
NOTE Communicated by John Lazzaro

On the Computational Power of Winner-Take-All

Wolfgang Maass
Institute for Theoretical Computer Science, Technische Universität Graz, A-8010 Graz,
Austria

This article initiates a rigorous theoretical analysis of the computational
power of circuits that employ modules for computing winner-take-all.
Computational models that involve competitive stages have so far been
neglected in computational complexity theory, although they are widely
used in computational brain models, artificial neural networks, and ana-
log VLSI. Our theoretical analysis shows that winner-take-all is a sur-
prisingly powerful computational module in comparison with threshold
gates (also referred to as McCulloch-Pitts neurons) and sigmoidal gates.
We prove an optimal quadratic lower bound for computing winner-take-
all in any feedforward circuit consisting of threshold gates. In addition
we show that arbitrary continuous functions can be approximated by cir-
cuits employing a single soft winner-take-all gate as their only nonlinear
operation.

Our theoretical analysis also provides answers to two basic questions
raised by neurophysiologists in view of the well-known asymmetry be-
tween excitatory and inhibitory connections in cortical circuits: how much
computational power of neural networks is lost if only positive weights
are employed in weighted sums and how much adaptive capability is lost
if only the positive weights are subject to plasticity.

1 Introduction

Computational models that involve competitive stages are widely used in
computational brain models, artificial neural networks, and analog VLSI
(see Arbib, 1995). The simplest competitive computational module is a hard
winner-take-all gate that computes a function WTAn: Rn → {0, 1}n whose
output 〈b1, . . . , bn〉 =WTAn(x1, . . . , xn) satisfies

bi =
{

1, if xi > xj for all j 6= i
0, if xj > xi for some j 6= i.

Thus, in the case of pairwise different inputs x1, . . . , xn a single output bit
bi has value 1, which marks the position of the largest input xi.1

1 Different conventions are considered in the literature in case that there is no unique
“winner” xi, but we need not specify any convention in this article since our lower-bound
result for WTAn holds for all of these versions.

Neural Computation 12, 2519–2535 (2000) c© 2000 Massachusetts Institute of Technology

2520 Wolfgang Maass

In this article we also investigate the computational power of two com-
mon variations of winner-take-all: k-winner-take-all, where the ith output
bi has value 1 if and only if xi is among the k largest inputs, and soft winner-
take-all, where the ith output is an analog variable ri whose value reflects
the rank of xi among the input variables.

Winner-take-all is ubiquitous as a computational module in computa-
tional brain models, especially in models involving computational mech-
anisms for attention (Niebur & Koch, 1998). Biologically plausible models
for computing winner-take-all in biological neural systems exist on the ba-
sis of both the assumption that the analog inputs xi are encoded through
firing rates—where the most frequently firing neuron exerts the strongest
inhibition on its competitors and thereby stops them from firing after a
while—and the assumption that the analog inputs xi are encoded through
the temporal delays of single spikes—where the earliest-firing neuron (that
encodes the largest xi) inhibits its competitors before they can fire (Thorpe,
1990).

We would like to point to another link between results of this article
and computational neuroscience. There exists a notable difference between
the computational role of weights of different signs in artificial neural net-
work models on one hand, and anatomical and physiological data regarding
the interplay of excitatory and inhibitory neural inputs in biological neural
systems on the other hand (see Abeles, 1991, and Shepherd, 1998). Virtu-
ally any artificial neural network model is based on an assumed symmetry
between positive and negative weights. Typically weights of either sign
occur on an equal footing as coefficients in weighted sums that represent
the input to an artificial neuron. In contrast, there exists a strong asym-
metry regarding positive (excitatory) and negative (inhibitory) inputs to
biological neurons. At most 15% of neurons in the cortex are inhibitory neu-
rons, and these are the only neurons that can exert a negative (inhibitory)
influence on the activity of other neurons. Furthermore, the location and
structure of their synaptic connections to other neurons differ drastically
from those formed by excitatory neurons. Inhibitory neurons are usually
connected to just neurons in their immediate vicinity, and it is not clear
to what extent their synapses are changed through learning. Furthermore,
the location of their synapses on the target neurons (rarely on spines, often
close to the soma, frequently with multiple synapses on the target neuron)
suggests that their computational function is not symmetric to that of ex-
citatory synapses. Rather, such data would support a conjecture that their
impact on other neurons may be more of a local regulatory nature—that
inhibitory neurons do not function as computational units per se like the
(excitatory) pyramidal neurons, whose synapses are subject to fine-tuning
by various learning mechanisms. These observations from anatomy and
neurophysiology have given rise to the question of whether a quite differ-
ent style of neural circuit design may be feasible, which achieves sufficient
computational power without requiring symmetry between excitatory and

On the Computational Power of Winner-Take-All 2521

inhibitory interaction among neurons. The circuits constructed in section 3
and 4 of this article provide a positive answer to this question. It is shown
there that neural circuits that use inhibition exclusively for lateral inhibi-
tion in the context of winner-take-all have the same computational power
as multilayer perceptrons that employ weighted sums with positive and
negative weights in the usual manner. Furthermore, one can, if one wants,
keep the inhibitory synapses in these circuits fixed and modify just the
excitatory synapses in order to program the circuits so that they adopt a
desired input-output behavior. It has long been known that winner-take-all
can be implemented via inhibitory neurons in biologically realistic circuit
models (Elias & Grossberg, 1975; Amari & Arbib, 1977; Coultrip, Granger,
& Lynch, 1992; Yuille and Grzywacz, 1989). The only novel contribution
of this article is the result that in combination with neurons that compute
weighted sums (with positive weights only), such winner-take-all modules
have universal computational power for both digital and analog computa-
tion.

A large number of efficient implementations of winner-take-all in analog
VLSI have been proposed, starting with Lazzaro, Ryckebusch, Mahowald,
and Mead (1989). The circuit of Lazzaro et al. computes an approximate
version of WTAn with just 2n transistors and wires of total length O(n),
with lateral inhibition implemented by adding currents on a single wire of
length O(n). Its computation timescales with the size of its largest input. Nu-
merous other efficient implementations of winner-take-all in analog VLSI
have subsequently been produced (e.g., Andreou et al., 1991; Choi & Sheu,
1993; Fang, Cohen, & Kincaid, 1996). Among them are circuits based on
silicon spiking neurons (DeYong, Findley, & Fields, 1992; Meador & Hylan-
der, 1994; Indiveri, in press) and circuits that emulate attention in artificial
sensory processing (DeWeerth and Morris, 1994; Horiuchi, Morris, Koch,
& DeWeerth, 1997; Brajovic & Kanade, 1998; Indiveri, in press). In spite of
these numerous hardware implementations of winner-take-all and numer-
ous practical applications, we are not aware of any theoretical results on
the general computational power of these modules. It is one goal of this
article to place these novel circuits in the context of other circuit models that
are commonly studied in computational complexity theory and to evaluate
their relative strength.

There exists an important structural difference between those that are
commonly studied in computational complexity theory and those that one
typically encounters in hardware or wetware. Almost all circuit models in
computational complexity theory are feedforward circuits—their architec-
ture constitutes a directed graph without cycles (Wegener, 1987; Savage,
1998). In contrast, typical physical realizations of circuits contain besides
feedforward connections also lateral connections (connections among gates
on the same layer), and frequently also recurrent connections (connections
from a higher-layer backward to some lower layer of the circuit). This gives
rise to the question whether this discrepancy is relevant—for example,

2522 Wolfgang Maass

whether there are practically important computational tasks that can be
implemented substantially more efficiently on a circuit with lateral connec-
tions than on a strictly feedforward circuit. In this article, we address this
issue in the following manner: we view modules that compute winner-take-
all (whose implementation usually involves lateral connections) as “black
boxes” of which we only model their input-output behavior. We refer to
these modules as winner-take-all gates in the following. We study possible
computational uses of such winner-take-all gates in circuits where these
gates (and other gates) are wired together in a feedforward fashion.2 We
charge one unit of time for the operation of each gate. We will show that in
this framework, the new modules, which may internally involve lateral con-
nections, do in fact add substantial computational power to a feedforward
circuit.

The arguably most powerful gates that have previously been studied
in computational complexity theory are threshold gates (also referred to
as McCulloch-Pitts neurons or perceptrons; see Minsky & Papert, 1969;
Siu, Roychowdury, & Kailath, 1995) and sigmoidal gates (which may be
viewed as soft versions of threshold gates). A threshold gate with weights
α1, . . . , αn ∈ R and threshold 2 ∈ R computes the function G: Rn → {0, 1}
defined by G(x1, . . . , xn) = 1 ⇔

n∑
i=1
αixi ≥ 2. Note that AND and OR of n

bits as well as NOT are special cases of threshold gates. A threshold circuit
(also referred to as multilayer perceptron) is a feedforward circuit consist-
ing of threshold gates. The depth of a threshold circuit C is the maximal
length of a directed path from an input node to an output gate. The circuit is
called layered if all such paths have the same length. Note that a circuit with
k hidden layers has depth k + 1 in this terminology. Except for theorem 1
we will discuss in this article only circuits with a single output. The other
results can be extended to networks with several outputs by duplicating the
network so that each output variable is formally computed by a separate
network.

We will prove in section 2 that WTAn is a rather expensive computational
operation from the point of view of threshold circuits, since any such circuit
needs quadratically in n many gates to compute WTAn. We will show in sec-
tion 3 that the full computational power of two layers of threshold gates can
be achieved by a single k-winner-take-all gate applied to positive weighted
sums of the input variables. Furthermore, we will show in section 4 that by
replacing the single k-winner-take-all gate by a single soft winner-take-all
gate, these extremely simple circuits become universal approximators for
arbitrary continuous functions.

2 We examine computations in such a circuit for only a single batch-input, not for
streams of varying inputs. Hence, it does not matter for this analysis whether one im-
plements a winner-take-all gate by a circuit that needs to be reinitialized before the next
input, or by a circuit that immediately responds to changes in its input.

On the Computational Power of Winner-Take-All 2523

2 An Optimal Quadratic Lower Bound for Hard Winner-Take-All

We show in this section that any feedforward circuit consisting of thresh-
old gates needs to consist of quadratically in n many gates for computing
WTAn. This result also implies a lower bound for any circuit of threshold
gates involving lateral and/or recurrent connections that compute WTAn
(provided one assumes that each gate receives at time t only outputs from
other gates that were computed before time t). One can simulate any circuit
with s gates whose computation takes t discrete time steps by a feedforward
circuit with s · t gates whose computation takes t discrete time steps. Hence,
for example, if there exists some circuit consisting of O(n) threshold gates
with lateral and recurrent connections that computes WTAn in t discrete
time steps, then WTAn can be computed by a feedforward circuit consisting
of O(t ·n) threshold gates. Therefore theorem 1 implies that WTAn cannot be
computed in sublinear time by any linear-size circuit consisting of threshold
gates with arbitrary (i.e., feedforward, lateral, and recurrent) connections.
In case linear-size implementations of (approximations of) WTAn in analog
VLSI can be built whose computation time grows sublinearly in n, then this
negative result would provide theoretical evidence for the superior compu-
tational capabilities of analog circuits with lateral connections.

For n = 2 it is obvious that WTAn can be computed by a threshold circuit
of size 2 and that this size is optimal. For n ≥ 3 the most straightforward
design of a (feedforward) threshold circuit C that computes WTAn uses(n

2

)+ n threshold gates. For each pair 〈i, j〉 with 1 ≤ i < j ≤ n, one employs
a threshold gate Gij that outputs 1 if and only if xj ≥ xi. The ith output
bi of WTAn for a circuit input x is computed by a threshold gate Gi with
Gi = 1⇔∑

j<i Gji(x)+
∑

j>i−Gij(x) ≥ i− 1.
This circuit design appears to be suboptimal, since most of its threshold

gates—the
(n

2

)
gates Gij—do not make use of their capability to evaluate

weighted sums of many variables, with arbitrary weights fromR. However,
the following result shows that no feedforward threshold circuit (not even
with an arbitrary number of layers, and threshold gates of arbitrary fan-in
with arbitrary real weights) can compute WTAn with fewer than

(n
2

) + n
gates.

Theorem 1. Assume that n ≥ 3 and WTAn is computed by some arbitrary
feedforward circuit C consisting of threshold gates with arbitrary weights. Then C
consists of at least

(n
2

)+ n threshold gates.

Proof. Let C be any threshold circuit that computes WTAn for all x =
〈x1, . . . , xn〉 ∈ Rn with pairwise different x1, . . . , xn . We say that a threshold
gate in the circuit C contains an input variable xk if there exists a direct
“wire” (i.e., an edge in the directed graph underlying C) from the kth input
node to this gate, and the kth input variable xk occurs in the weighted sum of

2524 Wolfgang Maass

this threshold gate with a weight 6= 0. This threshold gate may also receive
outputs from other threshold gates as part of its input, since we do not
assume that C is a layered circuit.

Fix any i, j ∈ {1, . . . ,n}with i 6= j. We will show that there exists a gate Gij
in C that contains the input variables xi and xj, but no other input variables.
The proof proceeds in four steps:

Step 1. Choose h ∈ (0.6, 0.9) and ρ ∈ (0, 0.1) such that no gate G in C that
contains the input variable xj, but no other input variable, changes
its output value when xj varies over (h− ρ, h+ ρ), no matter which
fixed binary values a have been assigned to the other inputs of gate
G. For any fixed a there exists at most a single value ta for xj, so
that G changes its output for xj = ta when xj varies from −∞ to
+∞. It suffices to choose h and ρ so that none of these finitely many
values of ta (for arbitrary binary a and arbitrary gates G) falls into
the interval (h− ρ, h+ ρ).

Step 2. Choose a closed ball B ⊆ (0, 0.5)n−2 with a center c ∈ Rn−2 and a
radius δ > 0 so that no gate G in C changes its output when we
set xi = xj = h and let the vector of the other n − 2 input variables
vary over B (this is required to hold for any fixed binary values
of the inputs that G may receive from other threshold gates). We
exploit here that for fixed xi = xj = h, the gates in C (with inputs
from other gates replaced by all possible binary values) partition
(0, 0.5)n−2 into finitely many sets S, each of which can be written as
an intersection of half-spaces, so that no gate in C changes its output
when we fix xi = xj = h and let the other n − 2 input variables of
the circuit vary over S (while keeping inputs to C from other gates
artificially fixed).

Step 3. Choose γ ∈ (0, ρ) so that in every gate G in C that contains besides
xj some other input variable xk with k /∈ {i, j}, a change of xj by
an amount γ causes a smaller change of the weighted sum at this
threshold gate G than a change by an amount δ of any of the input
variables xk with k /∈ {i, j} that it contains. This property can be
satisfied because we can choose for γ an arbitrarily small positive
number.

Step 4. Set xi := h, 〈xk〉k/∈{i,j} := c , and let xj vary over [h− γ

2 , h+ γ

2]. By as-
sumption, the output of C changes since the output of
WTAn(x1, . . . , xn) changes (xi is the winner for xj < h, xj is the win-
ner for xj > h). Let Gij be some gate in C that changes its output,
whereas no gate that lies on a path from an input variable to Gij
changes its output. Hence, Gij contains the input variable xj. The
choice of h and ρ > γ in step 1 implies that Gij contains besides xj
some other input variable. Assume for a contradiction that Gij con-
tains an input variable xk with k /∈ {i, j}. By the choice of γ in step 3

On the Computational Power of Winner-Take-All 2525

this implies that the output of Gij changes when we set xi = xj = h
and move xk by an amount up to δ from its value in c , while keep-
ing all other input variables and inputs that Gij receives from other
threshold gates fixed (even if some preceding threshold gates in C
would change their output in response to this change in the input
variable xk). This yields a contradiction to the definition of the ball B
in step 2. Thus we have shown that k ∈ {i, j} for any input variable xk
that Gij contains. Therefore Gij contains exactly the input variables
xi and xj.

So far we have shown that for any i, j ∈ {1, . . . ,n}with i 6= j, there exists
a gate Gij in C that contains the two input variables xi, xj, and no other input
variables.

It remains to be shown that apart from these
(n

2

)
gates Gij the circuit C

contains n other gates G1, . . . ,Gn that compute the n output bits b1, . . . , bn
of WTAn. It is impossible that Gk = Gl for some k 6= l, since bk 6= bl for some
arguments of WTAn. Assume for a contradiction that Gk = Gij for some
k, i, j ∈ {1, . . . ,n} with i 6= j. We have k 6= i or k 6= j. Assume without loss
of generality that k 6= i. Let l be any number in {1, . . . ,n} − {k, i}. Assign
to x1, . . . , xn some pairwise different values a1, . . . , an so that al > al′ for all
l′ 6= l. Since l 6= k and i 6= k, we have that for any xi ∈ R, the kth output
variable bk of WTAn(a1, . . . , ai−1, xi, ai+1, . . . an) has value 0 (ak cannot be the
maximal argument for any value of xi since al > ak). On the other hand,
since Gij contains the variable xi, there exist values for xi (move xi →∞ or
xi →−∞) so that Gij outputs 1, no matter which binary values are assigned
to the inputs that Gij receives in C from other threshold gates (while we keep
xj fixed at value aj). This implies that Gij does not output bk in circuit C, that
is, Gk 6= Gij. Therefore, the circuit C contains in addition to the gates Gij n
other gates that provide the circuit outputs b1, . . . , bn.

3 Simulating Two Layers of Threshold Gates with a Single
k-Winner-Take-All Gate as the Only Nonlinearity

A popular variation of winner-take-all (which has also been implemented
in analog VLSI; Urahama & Nagao, 1995) is k-winner-take-all. The output
of k-winner-take-all indicates for each input variable xi whether xi is among
the k largest inputs. Formally we define for any k ∈ {1, . . . ,n} the function
k-WTAn: Rn → {0, 1}n where k-WTAn (x1, . . . , xn) = 〈b1, . . . , bn〉 has the
property that

bi = 1⇔ (xj > xi holds for at most k− 1 indices j).

We will show in this section that a single gate that computes k-WTAn can
absorb all nonlinear computational operations of any two-layer threshold
circuit with one output gate and any number of hidden gates.

2526 Wolfgang Maass

Theorem 2. Any two-layer feedforward circuit C (with m analog or binary in-
put variables and one binary output variable) consisting of threshold gates can be
simulated by a circuit consisting of a single k-winner-take-all gate k-WTAn applied
to n weighted sums of the input variables with positive weights, except for some set
S ⊆ Rm of inputs that has measure 0.

In particular, any boolean function f : {0, 1}m → {0, 1} can be computed by a
single k-winner-take-all gate applied to weighted sums of the input bits.

If C has polynomial size and integer weights, whose size is bounded by a poly-
nomial in m, then n can be bounded by a polynomial in m, and all weights in the
simulating circuit are natural numbers whose size is bounded by a polynomial in m.

Remark 1. The exception set of measure 0 in this result is a union of up
to n hyperplanes in Rm. This exception set is apparently of no practical
significance, since for any given finite set D̃, not just for D̃ ⊆ {0, 1}m but, for
example, for D̃ := {〈z1, . . . , zm〉 ∈ Rm: each zi is a rational number with bit-
length ≤ 1000}, one can move these hyperplanes (by adjusting the constant
terms in their definitions) so that no point in D̃ belongs to the exception set.
Hence the k-WTA circuit can simulate the given threshold circuit C on any
finite set D̃, with an architecture that is independent of D̃.

On the other hand, the proof of the lower bound result from theorem 1
requires that the circuit C computes WTA everywhere, not just on a finite
set.

Remark 2. One can easily show that the exception set S of measure 0 in
theorem 2 is necessary: The set of inputs z ∈ Rm for which a k-WTAn gate
applied to weighted sums outputs 1 is always a closed set, whereas the set of
inputs for which a circuit C of depth 2 consisting of threshold gates outputs
1 can be an open set. Hence in general, a circuit C of the latter type cannot
be simulated for all inputs z ∈ Rm by a k-WTAn gate applied to weighted
sums.

Corollary 1. Any layered threshold circuit C of arbitrary even depth d can be
simulated for all inputs except for a set of measure 0 by a feedforward circuit
consisting of ` k-WTA gates on d

2 layers (each applied to positive weighted sums
of circuit inputs on the first layer and of outputs from preceding k-WTA gates on
the subsequent layers), where ` is the number of gates on even-numbered layers in
C. Thus, one can view the simulating circuit as a d-layer circuit with alternating
layers of linear and k-WTA gates.

Alternatively one can simulate the layers 3 to d of circuit C by a single k-
WTA gate applied to a (possibly very large) number of linear gates. This yields a
simulation of C (except for some input set S of measure 0) by a four-layer circuit
with alternating layers of linear gates and k-WTA gates. The number of k-WTA
gates in this circuit can be bounded by `2 + 1, where `2 is the number of threshold
gates on layer 2 of C.

On the Computational Power of Winner-Take-All 2527

Proof of Theorem 2. Since the outputs of the gates on the hidden layer of
C are from {0, 1}, we can assume without loss of generality that the weights
α1, . . . , αn of the output gate G of C are from {−1, 1}. (See, e.g., Siu et al.,
1995, for details. One first observes that it suffices to use integer weights for
threshold gates with binary inputs; one can then normalize these weights
to values in {−1, 1} by duplicating gates on the hidden layer of C.) Thus, for
any z ∈ Rm, we have C(z) = 1 ⇔ ∑n

j=1 αjĜj(z) ≥ 2, where Ĝ1, . . . , Ĝn are
the threshold gates on the hidden layer of C, α1, . . . , αn are from {−1, 1}, and
2 is the threshold of the output gate G. In order to eliminate the negative
weights in G, we replace each gate Ĝj for whichαj = −1 by another threshold
gate Gj so that Gj(z) = 1− Ĝj(z) for all z ∈ Rm except on some hyperplane.
We utilize here that ¬∑m

i=1 wizi ≥ 2 ⇔ ∑m
i=1(−wi)zi > −2 for arbitrary

wi, zi,2 ∈ R.We set Gj := Ĝj for all j ∈ {1, . . . ,n}with αj = 1. Then we have
for all z ∈ Rm, except for z from some exception set S consisting of up to n
hyperplanes,

n∑
j=1

αjĜj(z) =
n∑

j=1

Gj(z)− |{j ∈ {1, . . . ,n}: αj = −1}|.

Hence C(z) = 1⇔∑n
j=1 Gj(z) ≥ k for all z ∈ Rm−S, for some suitable k ∈ N.

Let wj
1, . . . ,wj

m ∈ R be the weights and 2j ∈ R be the threshold of gate

Gj, j = 1, . . . ,n. Thus, Gj(z) = 1 ⇔ ∑
i: wj

i>0 |w
j
i |zi −

∑
i: wj

i<0 |w
j
i |zi ≥ 2j.

Hence with

Sj: =
∑

i: wj
i<0

|wj
i |zi +2j +

∑
`6=j

∑
i: w`

i>0

|w`
i |zi for j = 1, . . . ,n

and

Sn+1: =
n∑

j=1

∑
i: wj

i>0

|wj
i |zi,

we have for every j ∈ {1, . . . ,n} and every z ∈ Rm:

Sn+1 ≥ Sj ⇔
∑

i: wj
i>0

|wj
i |zi −

∑
i: wj

i<0

|wj
i |zi ≥ 2j ⇔ Gj(z) = 1.

This implies that the (n+ 1)st output bn+1 of the gate (n− k+ 1)−WTAn+1
applied to S1, . . . ,Sn+1 satisfies

bn+1 = 1 ⇔ |{j ∈ {1, . . . ,n+ 1}: Sj > Sn+1}| ≤ n− k

⇔ |{j ∈ {1, . . . ,n+ 1}: Sn+1 ≥ Sj}| ≥ k+ 1

⇔ |{j ∈ {1, . . . ,n}: Sn+1 ≥ Sj}| ≥ k

⇔
n∑

j=1

Gj(z) ≥ k

⇔ C(z) = 1.

2528 Wolfgang Maass

Note that all the coefficients in the sums S1, . . . ,Sn+1 are positive.

Proof of Corollary 1. Apply the preceding construction separately to the
first two layers of C, then to the second two layers of C, and so on. Note that
the later layers of C receive just boolean inputs from the preceding layer.
Hence one can simulate the computation of layer 3 to d also by a two-layer
threshold circuit, which requires just a single k−WTA gate for its simulation
in our approach from theorem 2.

4 Soft Winner-Take-All Applied to Positive Weighted Sums Is an
Universal Approximator

We consider in this section a soft version soft-WTA of a winner-take-all
gate. Its output 〈r1, . . . , rn〉 for real valued inputs 〈x1, . . . , xn〉 consists of n
analog numbers ri, whose value reflects the relative position of xi within the
ordering of x1, . . . , xn according to their size. Soft versions of winner-take-
all are also quite plausible as computational function of cortical circuits
with lateral inhibition. Efficient implementations in analog VLSI are still
elusive, but in Indiveri (in press), an analog VLSI circuit for a version of soft
winner-take-all has been presented where the time when the ith output unit
is activated reflects the rank of xi among the inputs.

We show in this section that single gates from a fairly large class of soft
winner-take-all gates can serve as the only nonlinearity in universal approx-
imators for arbitrary continuous functions. The only other computational
operations needed are weighted sums with positive weights. We start with
a basic version of a soft winner-take-all gate soft-WTAn,k for natural num-
bers k,n with k ≤ n

2 , which computes the following function 〈x1, . . . , xn〉 7→
〈r1, . . . , rn〉 from Rn into [0, 1]n:

ri := π
(|{j ∈ {1, . . . ,n}: xi ≥ xj}| − n

2

k

)
,

where π : R→ [0, 1] is the piecewise linear function defined by

π(x) =

1, if x > 1
x, if 0 ≤ x ≤ 1
0, if x < 0.

If one implements a soft winner-take-all gate via lateral inhibition, one can
expect that its ith output ri is lowered (down from 1) by every competitor
xj that wins the competition with xi (i.e., xj > xi). Furthermore, one can
expect that the ith output ri is completely annihilated (i.e., is set equal to 0)
once the number of competitors xj that win the competition with xi reach a
certain critical value c. This intuition has served as a guiding principle in the
previously described formalization. However, for the sake of mathematical

On the Computational Power of Winner-Take-All 2529

simplicity, we have defined the outputs ri of soft-WTAn,k not in terms of the
number of competitors xj that win over xi (i.e., xj > xi), but rather in terms of
the number of competitors xj that do not win over xi (i.e., xi ≥ xj). Obviously
one has |{j ∈ {1, . . . ,n}: xi ≥ xj}| = n− |{j ∈ {1, . . . ,n} : xj > xi}|. Hence, the
value of ri goes down if more competitors xj win over xi—as desired. The
critical number c of winning competitors that suffice to “annihilate” ri is
formalized through the “threshold” n

2 . Our subsequent result shows that in
principle, it suffices to set the annihilation-threshold always equal to n

2 . But
in applications, one may, of course, choose other values for the annihilation
threshold.

It is likely that an analog implementation of a soft-winner-take-all gate
will not be able to produce an output that is really linearly related to |{j ∈
{1, . . . ,n}: xi ≥ xj}| − n

2 over a sufficiently large range of values. Instead, an
analog implementation is more likely to output a value of the form

g
(|{j ∈ {1, . . . ,n}: xi ≥ xj}| − n

2

k

)
,

where the piecewise linear function π is replaced by some possibly rather
complicated nonlinear warping of the target output values. The follow-
ing result shows that such gates with any given nonlinear warping g can
serve just as well as the competitive stage (and as the only nonlinearity) in
universal approximators. More precisely, let g be any continuous function
g: R → [0, 1] that has value 1 for x > 1, value 0 for x < 0, and which is
strictly increasing over the interval [0, 1]. We denote a soft winner-take-all
gate that employs g instead of π by soft-WTAg

n,k.

Theorem 3. Assume that h: D → [0, 1] is an arbitrary continuous function
with a bounded and closed domain D ⊆ Rm (for example: D = [0, 1]m). Then for
any ε > 0 and for any function g (satisfying above conditions) there exist natural
numbers k,n, biases α j

0 ∈ R, and nonnegative coefficients α j
i for i = 1, . . . ,m

and j = 1, . . . ,n , so that the circuit consisting of the soft winner-take-all gate
soft-WTAg

n,k applied to the n sums
∑m

i=1 α
j
i zi + α j

0 for j = 1, . . . ,n computes a
function3 f : D→ [0, 1] so that | f (z)− h(z)| < ε for all z ∈ D.

Thus, circuits consisting of a single soft WTA-gate applied to positive weighted
sums of the input variables are universal approximators for continuous functions.

Remark 3. The proof shows that the number n of sums that arise in the
circuit constructed in theorem 3 can essentially be bounded in terms of
the number of hidden gates in a one-hidden-layer circuit C of sigmoidal
gates that approximates the given continuous function h (more precisely,

3 More precisely, we set f (z) := rn for the nth output variable rn of soft-WTAg
n,k.

2530 Wolfgang Maass

the function g−1 ◦ h), the maximal size of weights (expressed as multi-
ple of the smallest nonzero weight) on the second layer of C, and 1/ε
(where ε is the desired approximation precision). Numerous practical ap-
plications of backprop suggest that at least the first one of these three
numbers can be kept fairly small for most functions h that are of practical
interest.

Proof of Theorem 3. The proof has the following structure. We first ap-
ply the regular universal approximation theorem for sigmoidal neural nets
in order to approximate the continuous function g−1(h(z)) by a weighted
sum

∑ñ
j=1 β̃jG1

j (z) of π -gates, that is, of sigmoidal gates G1
j that employ

the piecewise linear activation function π that has already been defined.
As the next step, we simplify the weights and approximate the weighted
sum

∑ñ
j=1 β̃jG1

j (z) by another weighted sum
∑n̂

j=1
αj

k̂
G2

j (z) of π gates G2
j with

αj ∈ {−1, 1} for j = 1, . . . , n̂ and some suitable k̂ ∈ N. We then eliminate
all negative weights by making use of the fact that one can rewrite −G2

j (z)

as G3
j (z) − 1 with another π gate G3

j , for all j with αj = −1. By setting

G3
j := G2

j for all j with αj = 1, we then have
∑n̂

j=1
αj

k̂
G2

j (z) =
∑n̂

j=1
G3

j (z)−T̂

k̂
for

all z ∈ D, with some T̂ ∈ {0, . . . , n̂}. As the next step, we approximate each
π gate G3 by a sum 1

`

∑`
i=1 G(i) of ` threshold gates G(i). Thus, altogether

we have constructed an approximation of the continuous function g−1(h(z))
by a weighted sum

∑n′
j=1

Gj(z)−T
k of threshold gates with a uniform value 1

k

for all weights.4 By expanding our technique from the proof of theorem 2,
we can replace this simple sum of threshold gates by a single soft-WTAg

n,k
gate applied to weighted sums in such a way that the resulting WTA circuit
approximates the given function h.

We now describe the proof in detail. According to Leshno, Lin, Pinkus,
and Schocken (1993) there exist ñ ∈ N, β̃j ∈ R, andπ gates G1

j for j = 1, . . . , ñ
so that∣∣∣∣∣∣

ñ∑
j=1

β̃jG1
j (z)− g−1(h(z))

∣∣∣∣∣∣ < ε̃

3
for all z ∈ D,

where g−1 is the inverse of the restriction of the given function g to [0, 1],
and ε̃ > 0 is chosen so that |g(x)− g(y)| < ε for any x, y ∈ Rwith |x−y| < ε̃.
We are relying here on the fact that g−1 ◦ h is continuous.

4 One could, of course, also apply the universal approximation theorem directly to
threshold gates (instead of π gates) in order to get an approximation of g−1 ◦ h by a
weighted sum of threshold gates. But the elimination of negative weights would then
give rise to an exception set S, as in theorem 3.

On the Computational Power of Winner-Take-All 2531

As the next step, we simplify the weights. It is obvious that there exist
k̂ ∈ N and β1, . . . , βñ ∈ Z so that

∑ñ
j=1 |β̃j − βj

k̂
| < ε̃

3 . We then have∣∣∣∣∣∣
ñ∑

j=1

βj

k̂
G1

j (z)− g−1(h(z))

∣∣∣∣∣∣ < 2
3
ε̃ for all z ∈ D.

We set n̂ := ∑ñ
j=1 |βj|, and for all j ∈ {1, . . . , ñ} we create |βj| copies of the

π -gate G1
j . Let G2

1, . . . ,G2
n̂ be the resulting sequence ofπ gates G2

j . Then there
exist αj ∈ {−1, 1} for j = 1, . . . , n̂ so that∣∣∣∣∣∣

n̂∑
j=1

αj

k̂
G2

j (z)− g−1(h(z))

∣∣∣∣∣∣ < 2
3
ε̃ for all z ∈ D.

We now eliminate all negative weights from this weighted sum. More pre-
cisely, we show that there are π gates G3

1, . . . ,G3
n̂ so that

n̂∑
j=1

αj

k̂
G2

j (z) =
∑n̂

j=1 G3
j (z)− T̂

k̂
for all z ∈ D, (4.1)

where T̂ is the number of j ∈ {1, . . . , n̂} with αj = −1. Consider some
arbitrary j ∈ {1, . . . , n̂} with αj = −1. Assume that G2

j is defined by G2
j (z) =

π(w ·z+w0+ 1
2) for all z ∈ Rm, with parameters w ∈ Rm and w0 ∈ R. Because

of the properties of the function π , we have

−π
(

w · z+ w0 + 1
2

)
= −1+ π

(
−w · z− w0 + 1

2

)
for all z ∈ Rm. Indeed, if |w · z + w0| ≤ 1

2 we have −π(w · z + w0 + 1
2) =

−w · z − w0 − 1
2 = −1 + π(−w · z − w0 + 1

2). If w · z + w0 < − 1
2 then

−π(w · z + w0 + 1
2) = 0 = −1 + π(−w · z − w0 + 1

2), and if w · z + w0 >
1
2

then−π(w · z+w0+ 1
2)= −1= −1+π(−w · z−w0+ 1

2). Thus, if we define
the π gate G3

j by

G3
j (z) = π

(
−w · z− w0 + 1

2

)
for all z ∈ Rm,

we have −G2
j (z) = −1 + G3

j (z) for all z ∈ Rm. Besides transforming all π

gates G2
j with αj = −1 in this fashion, we set G3

j = G2
j for all j ∈ {1, . . . , n̂}

with αj = 1. Obviously equation 4.1 is satisfied with these definitions.
Since the activation function π can be approximated arbitrarily close by

step functions, there exists for each π gate G3 a sequence G(1), . . . ,G(`) of
threshold gates so that∣∣∣∣∣G3(z)−

∑`
i=1 G(i)(z)
`

∣∣∣∣∣ < ε̃ · k̂
3 · n̂ for all z ∈ Rm.

2532 Wolfgang Maass

By applying this transformation to all π -gates G3
1, . . . ,G3

n̂, we arrive at a
sequence G1, . . . ,Gn′ of threshold gates with n′ := n̂ · ` so that one has for
k := k̂ · ` and T := T̂ · ` that∣∣∣∣∣

∑n′
j=1 Gj(z)− T

k
− g−1(h(z))

∣∣∣∣∣ < ε̃ for all z ∈ D.

According to the choice of ε̃, this implies that∣∣∣∣∣g
(∑n′

j=1 Gj(z)− T

k

)
− h(z)

∣∣∣∣∣ < ε for all z ∈ D.

By adding dummy threshold gates Gj that give constant output for all z ∈ D,
one can adjust n′ and T so that n′ ≥ 2k and T = n′−1

2 , without changing the
value of

∑n′
j=1 Gj(z)− T for any z ∈ D.

It remains to show that

g

(∑n′
j=1 Gj(z)− n′−1

2

k

)

can be computed for all z ∈ D, by some soft winner-take-all gate soft-WTAg
n,k

applied to n weighted sums with positive coefficients. We set n := n′ + 1.
For j = 1, . . . ,n′ and i = 1, . . . ,m let wj

i ,2
j ∈ R be parameters so that

Gj(z) = 1⇔
∑

i: wj
i>0

|wj
i |zi −

∑
i: wj

i<0

|wj
i |zi ≥ 2j.

Then
∑n′

j=1 Gj(z) = |{j ∈ {1, . . . ,n′}: Sn′+1 ≥ Sj}| for Sn′+1 :=∑n′
j=1
∑

i: wj
i>0 |w

j
i |zi

and Sj :=∑i: wj
i<0 |w

j
i |zi +2j +∑`6=j

∑
i: w`

i>0 |w`
i |zi . This holds because we

have for every j ∈ {1, . . . ,n′}

Sn′+1 ≥ Sj ⇔
∑

i: wj
i>0

|wj
i |zi −

∑
i: wj

i<0

|wj
i |zi ≥ 2j.

Since n = n′ + 1 and therefore n′−1
2 + 1 = n

2 , the preceding implies that
the nth output variable rn of soft-WTAg

n,k applied to S1, . . . ,Sn outputs

g
(|{j ∈ {1, . . . ,n}: Sn ≥ Sj}| − n

2

k

)
= g

(∑n′
j=1 Gj(z)− n′−1

2

k

)

for all z ∈ D. Note that all weights in the weighted sums S1, . . . ,Sn are
positive.

On the Computational Power of Winner-Take-All 2533

5 Conclusions

We have established the first rigorous analytical results regarding the com-
putational power of winner-take-all.

The lower-bound result of section 2 shows that the computational power
of hard winner-take-all is already quite large, even if compared with the ar-
guably most powerful gate commonly studied in circuit complexity theory:
the threshold gate (also referred to a McCulloch-Pitts neuron or perceptron).
Theorem 1 yields an optimal quadratic lower bound for computing hard
winner-take-all on any feedforward circuit consisting of threshold gates.
This implies that no circuit consisting of linearly many threshold gates with
arbitrary (i.e., feedforward, lateral, and recurrent) connections can com-
pute hard winner-take-all in sublinear time. Since approximate versions of
winner-take-all can be computed very fast in linear-size analog VLSI chips
(Lazzaro et al., 1989), this lower-bound result may be viewed as evidence
for a possible gain in computational power that can be achieved by lateral
connections in analog VLSI (and apparently also in cortical circuits).

It is well known (Minsky & Papert, 1969) that a single threshold gate is
unable to compute certain important functions, whereas circuits of moder-
ate (i.e., polynomial)-size consisting of two layers of threshold gates with
polynomial size weights have remarkable computational power (Siu et al.,
1995). We showed in section 3 that any such two-layer (i.e., one hidden layer)
circuit can be simulated by a single competitive stage, applied to polynomi-
ally many weighted sums with positive integer weights of polynomial size.

In section 4, we analyzed the computational power of soft winner-take-
all gates in the context of analog computation. It was shown that a single soft
winner-take-all gate may serve as the only nonlinearity in a class of circuits
that have universal computational power in the sense that they can approx-
imate any continuous functions. In addition, we showed that this result is
robust with regard to any continuous nonlinear warping of the output of
such a soft winner-take-all gate, which is likely to occur in an analog im-
plementation of soft winner-take-all in hardware or wetware. Furthermore,
our novel universal approximators require only positive linear operations
besides soft winner-take-all, thereby showing that in principle, no compu-
tational power is lost if inhibition is used exclusively for unspecific lateral
inhibition in neural circuits, and no flexibility is lost if synaptic plasticity
(i.e., “learning”) is restricted to excitatory synapses.

This result appears to be of interest for understanding the function of
biological neural systems, since typically only 15% of synapses in the cortex
are inhibitory, and plasticity for those synapses is somewhat dubious.

Our somewhat surprising results regarding the computational power
and universality of winner-take-all point to further opportunities for low-
power analog VLSI chips, since winner-take-all can be implemented very
efficiently in this technology. In particular, our theoretical results of section
4 predict that efficient implementations of soft winner-take-all will be useful

2534 Wolfgang Maass

in many contexts. Previous analog VLSI implementations of winner-take-all
have primarily been used for special-purpose computational tasks. In con-
trast, our results show that a VLSI implementation of a single soft winner-
take-all in combination with circuitry for computing weighted sums of the
input variables yields devices with universal computational power for ana-
log computation. A more qualitative account of the results of this article can
be found in Maass, Wolfgang (1999).

The theoretical results of this article support the viability of an alterna-
tive style of neural circuit design, where complex multilayer perceptrons—
feedforward circuits consisting of threshold gates or sigmoidal gates with
positive and negative weights—are replaced by a single competitive stage
applied to positive weighted sums. One may argue that this circuit design
is more compatible with anatomical and physiological data from biological
neural circuits.

Acknowledgments

I thank Moshe Abeles, Peter Auer, Rodney Douglas, Timmer Horiuchi, Gia-
como Indiveri, and Shih-chii Liu for helpful discussions and the anonymous
referees for helpful comments.

Research for this article was partially supported by the ESPRIT Work-
ing Group NeuroCOLT, No. 8556, and the Fonds zur Förderung der wis-
senschaftlichen Forschung (FWF), Austria, project P12153.

References

Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge:
Cambridge University Press.

Amari, S., & Arbib, M. (1977). Competition and cooperation in neural nets.
In J. Metzler (Ed.), Systems neuroscience (pp. 119–165). San Diego: Academic
Press.

Andreou, A. G., Boahen, K. A., Pouliquen, P. O, Pavasovic, A., Jenkins, R. E.,
& Strohbehn, K. (1991). Current-mode subthreshold MOS circuits for analog
VLSI neural systems. IEEE Trans. on Neural Networks, 2, 205–213.

Arbib, M. A. (1995). The handbook of brain theory and neural networks. Cambridge,
MA: MIT Press .

Brajovic, V., & Kanade, T. (1998). Computational sensor for visual tracking with
attention. IEEE Journal of Solid State Circuits, 33, 8, 1199–1207.

Choi, J., & Sheu B. J. (1993). A high precision VLSI winner-take-all circuit for
self-organizing neural networks. IEEE J. Solid-State Circuits, 28, 576–584.

Coultrip, R., Granger R., & Lynch, G. (1992). A cortical model of winner-take-all
competition via lateral inhibition. Neural Networks, 5, 47–54.

DeWeerth, S. P., & Morris, T. G. (1994). Analog VLSI circuits for primitive sensory
attention. Proc. IEEE Int. Symp. Circuits and Systems, 6, 507–510.

DeYong, M., Findley, R., & Fields, C. (1992). The design, fabrication, and test of
a new VLSI hybrid analog-digital neural processing element. IEEE Trans. on

On the Computational Power of Winner-Take-All 2535

Neural Networks, 3, 363–374.
Elias, S. A., & Grossberg, S. (1975). Pattern formation, contrast control, and

oscillations in the short term memory of shunting on-center off-surround
networks. Biol. Cybern., 20, 69–98.

Fang, Y., Cohen, M., & Kincaid, M. (1996). Dynamics of a winner-take-all neural
network. Neural Networks, 9, 1141–1154.

Horiuchi, T. K., Morris, T. G., Koch, C., & DeWeerth, S. P. (1997). Analog VLSI cir-
cuits for attention-based visual tracking. In M. Mozer, M. Jordan, & T. Petsche
(Eds.), Advances in neural information processing systems (pp. 706–712). Cam-
bridge, MA: MIT Press.

Indiveri, G. (in press). Modeling selective attention using a neuromorphic
analog-VLSI device. Neural Computation.

Lazzaro, J., Ryckebusch, S., Mahowald, M. A., & Mead, C. A. (1989). Winner-
take-all networks of O(n) complexity. In D. Touretzky (Ed.), Advances in neural
information processing systems, 1 (pp. 703–711). San Mateo, CA: Morgan Kauf-
mann.

Leshno, M., Lin, V., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function. Neural Networks, 6, 861–867.

Maass, Wolfgang. (1999). Neural computation with winner-take-all as the only
nonlinear operation. Advances in Neural Information Processing Systems 1999,
12. Cambridge: MIT Press.

Meador, J. L., & Hylander, P. D. (1994). Pulse coded winner-take-all networks. In
M. E. Zaghloul, J. Meador, & R. W. Newcomb (Eds.), Silicon implementation of
pulse coded neural networks (pp. 79–99). Boston: Kluwer Academic Publishers.

Minsky, M. C., & Papert, S. A. (1969). Perceptrons. Cambridge, MA: MIT Press.
Niebur, E., & Koch, C. (1998). Computational architectures for attention. In

R. Parasuraman (Ed.), The Attentive Brain (pp. 163–186). Cambridge, MA:
MIT Press.

Savage, J. E. (1998). Models of computation: Exploring the power of computing. Read-
ing, MA: Addison-Wesley.

Shepherd, G. M. (Ed.). (1998). The synaptic organization of the brain. Oxford: Oxford
University Press.

Siu, K.-Y., Roychowdhury, V., & Kailath, T. (1995). Discrete neural computation: A
theoretical foundation. Englewood Cliffs, NJ: Prentice Hall.

Thorpe, S. J. (1990). Spike arrival times: A highly efficient coding scheme for
neural networks. In R. Eckmiller, G. Hartmann, and G. Hauske (Eds.), Parallel
processing in neural systems and computers (pp. 91–94). Amsterdam: Elsevier.

Urahama, K., & Nagao, T. (1995). k-winner-take-all circuit with O(N) complexity.
IEEE Trans. on Neural Networks, 6, 776–778.

Yuille, A. L., & Grzywacz, N. M. (1989). A winner-take-all mechanism based on
presynaptic inhibition. Neural Computation, 1, 334–347.

Wegener, I. (1987). The complexity of boolean functions. New York: Wiley.

Received May 21, 1999; accepted November 15, 1999.

