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Abstract

We consider recurrent analog neural nets where each gate is subject to
Gaussian noise, or any other common noise distribution whose probabil-
ity density function is nonzero on a large set. We show that many regular
languages cannot be recognized by networks of this type, for example
the language

���������
	��� ��� �
begins with

��
, and we give a precise

characterization of those languages which can be recognized. This result
implies severe constraints on possibilities for constructing recurrent ana-
log neural nets that are robust against realistic types of analog noise. On
the other hand we present a method for constructing feedforward analog
neural nets that are robust with regard to analog noise of this type.

1 Introduction

A fairly large literature (see [Omlin, Giles, 1996] and the references therein) is devoted
to the construction of analog neural nets that recognize regular languages. Any physical
realization of the analog computational units of an analog neural net in technological or
biological systems is bound to encounter some form of “imprecision” or analog noise at
its analog computational units. We show in this article that this effect has serious conse-
quences for the computational power of recurrent analog neural nets. We show that any
analog neural net whose computational units are subject to Gaussian or other common
noise distributions cannot recognize arbitrary regular languages. For example, such analog
neural net cannot recognize the regular language

���������
	��� ��� �
begins with

��
.
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A precise characterization of those regular languages which can be recognized by such
analog neural nets is given in Theorem 1.1. In section 3 we introduce a simple technique
for making feedforward neural nets robust with regard to the same types of analog noise.
This method is employed to prove the positive part of Theorem 1.1. The main difficulty in
proving Theorem 1.1 is its negative part, for which adequate theoretical tools are introduced
in section 2.

Before we can give the exact statement of Theorem 1.1 and discuss related preceding work
we have to give a precise definition of computations in noisy neural networks. From the
conceptual point of view this definition is basically the same as for computations in noisy
boolean circuits (see [Pippenger, 1985] and [Pippenger, 1990]). However it is technically
more involved since we have to deal here with an infinite state space.

We will first illustrate this definition for a concrete case, a recurrent sigmoidal neural net
with Gaussian noise, and then indicate the full generality of our result, which makes it
applicable to a very large class of other types of analog computational systems with analog
noise. Consider a recurrent sigmoidal neural net � consisting of � units, that receives
at each time step � an input ��� from some finite alphabet � (for example ��� ���
	���

).
The internal state of � at the end of step � is described by a vector 	
� ���  � 	������ , which
consists of the outputs of the � sigmoidal units at the end of step � . A computation step of
the network � is described by

	���������������	����! "�#�$�&%'�!()�+*
where � ��, �$-.�

and % 	  ��, � represent weight matrix and vectors, � is a sigmoidal
activation function (e.g., ����/)*0� �21 � � ��354�67* ) applied to each vector component, and(�� 	 (�8 	:9:9:9 is a sequence of � -vectors drawn independently from some Gaussian distribu-
tion. In analogy to the case of noisy boolean circuits [Pippenger, 1990] one says that this
network � recognizes a language ;=<>� � with reliability ? (where ? � � �
	 �8 � is some
given constant) if immediately after reading an arbitrary word

� � � � the network � is
with probability @ �8 �A? in an accepting state in case that

� � ; , and with probabilityB �8  ? in an accepting state in case that
�C1� ; 1.

We will show in this article that even if the parameters of the Gaussian noise distribution for
each sigmoidal unit can be determined by the designer of the neural net, it is impossible to
find a size � , weight matrix � , vectors  	 % and a reliability ? � � �
	 �8 � so that the resulting
recurrent sigmoidal neural net with Gaussian noise accepts the simple regular language��� � ���
	��� ��� �

begins with
��

with reliability ? . This result exhibits a fundamental
limitation for making a recurrent analog neural net noise robust, even in a case where the
noise distribution is known and of a rather benign type. This quite startling negative result
should be contrasted with the large number of known techniques for making a feedforward
boolean circuit robust against noise, see [Pippenger, 1990].

Our negative result turns out to be of a very general nature, that holds for virtually all related
definitions of noisy analog neural nets and also for completely different models for analog
computation in the presence of Gaussian or similar noise. Instead of the state set

�  � 	����&�
one can take any compact set D�< ,�� , and instead of the map ��	 	 �
*FEGH��	I�# J�K��% one
can consider an arbitrary map LNM5DPON�QGSRD for a compact set RDP< ,T� where LI�VU 	 �
* is
Borel measurable for each fixed � � � . Instead of a sigmoidal activation function � and a
Gaussian distributed noise vector ( it suffices to assume that �KM ,'� GHD is some arbitrary
Borel measurable function and ( is some

,F�
-valued random variable with a density W��VU *

that has a wide support2. In order to define a computation in such system we consider for

1According to this definition a network X that is after reading some YAZ\[ � in an accepting state
with probability strictly between ]^`_ba and ]^dcea does not recognize any language fhg#[ � .

2More precisely: We assume that there exists a subset iFj of i and some constant kljnmpo such



each � � � the stochastic kernel ��� defined by ���$��	 	�� *`M ������	�
 � ����LT��	 	 �
*��!(I* ��� �
for 	 � D and

� <=D . For each (signed, Borel) measure  on D , and each � � � , we
let ���� be the (signed, Borel) measure defined on D by ������ *�� � * M ����������	 	�� *���F��	�* 9
Note that ���� is a probability measure whenever  is. For any sequence of inputs

� ���� 	:9:9:9 	 ��� , we consider the composition of the evolution operators ����� :
��� �������! ������#"%$� 9:9:9  ����&$ 9 (1)

If the probability distribution of states at any given instant is given by the measure  , then
the distribution of states after a single computation step on input � � � is given by �!�� ,
and after ' computation steps on inputs

� � ��� 	:9:9:9�	 ��� , the new distribution is �(�� ,
where we are using the notation (1). In particular, if the system starts at a particular initial
state ) , then the distribution of states after ' computation steps on

�
is �*�(+-, , where +-, is

the probability measure concentrated on
� )  . That is to say, for each measurable subset. < D

����	�
 � 	�� ��� � . � 	
���/) 	 input � � � � ������+-, *�� . * 9
We fix an initial state ) � D , a set of “accepting” or “final” states

.
, and a “reliability”

level ?10 �
, and say that the resulting noisy analog computational system 2 recognizes

the language ;p<�� � if for all
��� � � :� � ;43�5 �����(+-, *�� . *`@

�
6 � ?

�87� ;43�5 �����(+-, *�� . * B
�
6  ? 9

In general a neural network that simulates a DFA will carry out not just one, but a fixed
number 9 of computation steps (=state transitions) of the form 	;: � ������	!�  #���% �Q(I* for each input symbol � � � that it reads (see the constructions described in
[Omlin, Giles, 1996], and in section 3 of this article). This can easily be reflected in our
model by formally replacing any input sequence

� �p�T� 	 ��8 	:9:9:9 	 ��� from � � by a padded
sequence <� ����� 	>=-? 4 � 	 ��8 	>=-? 4 � 	:9:9:9�	 ��� 	>=-? 4 � from �&�/@ �A=� * � , where

=
is a blank sym-

bol not in � , and
=B? 4 � denotes a sequence of 9  � copies of

=
(for some arbitrarily fixed

9 @ �
). This completes our definition of language recognition by a noisy analog compu-

tational system 2 with discrete time. This definition essentially agrees with that given in
[Maass, Orponen, 1997].

We employ the following common notations from formal language theory: We write
� � � 8

for the concatenation of two strings
� � and

� 8 	 � � for the set of all concatenations of '
strings from � 	 � � for the set of all concatenations of any finite number of strings from � ,
and �J( for the set of all strings

� � � 8 with
� � � � and

� 8 � ( . The main result of this
article is the following:

Theorem 1.1 Assume that � is some arbitrary finite alphabet. A language ; < � � can
be recognized by a noisy analog computational system of the previously specified type if
and only if ; ��C �EDp� � C�8 for two finite subsets C � and C�8 of � � .
A corresponding version of Theorem 1.1 for discrete computational systems was previously
shown in [Rabin, 1963]. More precisely, Rabin had shown that probabilistic automata with
strictly positive matrices can recognize exactly the same class of languages ; that occur
in our Theorem 1.1. Rabin referred to these languages as definite languages. Language
recognition by analog computational systems with analog noise has previously been in-
vestigated in [Casey, 1996] for the special case of bounded noise and perfect reliability

that the following two properties hold: FHGJI�KML k j for all IIZ�NPO QSRET$]�G�i�j-K _ Ri (that is, N is the
set consisting of all possible differences U _WV , with R;GXUAK�Z i'j and V Z Ri ) and R T$] G�i�j-K has finite
and nonzero Lebesgue measure Y j�Q[Z]\�R T$] G�i�j-K_^ .



(i.e. ������������W��
	.*���	 � �
for some small �[0 �

and ?0� �21 6
in our terminology), and in

[Maass, Orponen, 1997] for the general case. It was shown in [Maass, Orponen, 1997] that
any such system can only recognize regular languages. Furthermore it was shown there
that if � ��������� W��
	.*���	N� �

for some small � 0 �
then all regular languages can be recog-

nized by such systems. In the present paper we focus on the complementary case where the
condition “ ������������W��
	.*���	\� � for some small �W0 � ” is not satisfied, i.e. analog noise may
move states over larger distances in the state space. We show that even if the probability of
such event is arbitrarily small, the neural net will no longer be able to recognize arbitrary
regular languages.

2 A Constraint on Language Recognition

We prove in this section the following result for arbitrary noisy computational systems 2
as specified at the end of section 1:

Theorem 2.1 Assume that � is some arbitrary alphabet. If a language ; <C� � is rec-
ognized by 2 , then there are subsets CJ� and C�8 of � � � , for some integer ' , such that; �8C � D=� � C�8 . In other words: whether a string

� � � � belongs to the language ;
can be decided by just inspecting the first ' and the last ' symbols of

�
.

2.1 A General Fact about Stochastic Kernels

Let �� 	�� * be a measure space, and let � be a stochastic kernel3. As in the special case of
the ��� ’s above, for each (signed) measure  on �� 	�� * , we let �  be the (signed) measure
defined on

�
by ���� *�� � *JM � � �!��	 	�� *���F��	�* 9 Observe that �� is a probability measure

whenever  is. Let %�0 �
be arbitrary. We say that � satisfies Doeblin’s condition (with

constant % ) if there is some probability measure � on �� 	�� * so that
�!��	 	�� *`@p%���� � * for all 	 �  	�� ���N9 (2)

(Necessarily % B �
, as is seen by considering the special case

� �� .) This condition is
due to [Doeblin, 1937].

We denote by � �� the total variation of the (signed) measure  . Recall that �>�� is de-
fined as follows. One may decompose  into a disjoint union of two sets

�
and � , in

such a manner that  is nonnegative on
�

and nonpositive on � . Letting the restrictions
of  to

�
and � be “  � ” and “

  4 ” respectively (and zero on � and
�

respectively),
we may decompose  as a difference of nonnegative measures with disjoint supports,
 �4��   4

9
Then, � ��N� �� � � *`�P 4 ���"* . The following Lemma is a “folk”

fact ([Papinicolaou, 1978]).

Lemma 2.2 Assume that � satisfies Doeblin’s condition with constant % . Let  be any
(signed) measure such that F��F*'� � . Then �-� �� B � �  %:*��>�� .

2.2 Proof of Theorem 2.1

Lemma 2.3 There is a constant % 0 �
such that �W� satisfies Doeblin’s condition with

constant % , for every � � � .

Proof. Let D�� , %�� , and
����� � � �

be as in the second footnote, and introduce the
following (Borel) probability measure on D � :

! � � � *bM �
�
� �

! \ � 4 � � � * ^ 9
3That is to say, " G$#&%(' K is a probability distribution for each # , and " G�' %�)�K is a measurable

function for each Borel measurable set ) .



Pick any measurable
� < D�� and any / � RD . Then,� ��/ 	�� * � ����	�
 � ����/n�!(I* � � � � ����	�
 � /J�!( � � 4 � � � * �

�
�����

W��
	.* ��	=@ %�� ! � � 6 *#� %�� ! \ � 4 � � � * ^ � %�� � � ! �5� � * 	

where
�
6 M � � 4 � � � *  � /  <�� . We conclude that

� ��/ 	�� *b@ % ! �5� � * for all / 	�� ,
where %��P%�� � � . Finally, we extend the measure

! � to all of D by assigning zero measure
to the complement of D�� , that is, ��� � *�M � ! � � �	� D � * for all measurable subsets

�
of D .

Pick � � � ; we will show that ��� satisfies Doeblin’s condition with the above constant% (and using � as the “comparison” measure in the definition). Consider any 	 � D and
measurable

� < D . Then,

���$��	 	�� *'� � ��LT��	 	 �
* 	�� *d@ � ��LT��	 	 �
* 	��	
 D � *d@p% ! �5� �	
 D � *'� %���� � * 	

as required.

For every two probability measures �� 	 �8 on D , applying Lemma 2.2 to KM ����  �8 , we
know that �-������  �����8�� B � �  %:*�� ��  �8 � for each � � � . Recursively, then, we
conclude:

�-������  �����8�� B � �� %:* � � ��  �8�� B 6 � �  %:* � (3)

for all words
�

of length @S' .
Now pick any integer ' such that � �  %:* � � 6 ? 9 From Equation (3), we have that

� ������  �����8�� ��� ?
for all

�
of length @�' and any two probability measures F� 	 �8 . In particular, this means

that, for each measurable set
�

,
� ��������:*�� � *  �������8 *�� � * � � 6 ? (4)

for all such
�

. (Because, for any two probability measures .� and 28 , and any measurable
set

�
,
6 �  �2� � *  28 � � * � B �� �  28�� .)

Lemma 2.4 Pick any 	 � � � and
��� � � . Then
��� ; 3�5 	 ��� ; 9

Proof. Assume that
� � ; , that is, �����(+-, *�� . *`@ �8 � ? . Applying inequality (4) to the mea-

sures ��JM � +-, and �8"M � � � +-, and
� � .

, we have that
� ���(�(+-, *�� . *  ��� � ��+-, *�� . * � �6 ? , and this implies that ��� � �(+-, *�� . *�0 �8  ? , i.e., 	 ��� ; . (Since �8  ? � ��� � ��+-, *�� . * ��8 � ? is ruled out.) If

�87� ; , the argument is similar.

We have proved that

; 
 �&� � � � * � � � � ; 
 � � * 9
So,

;���� ; 
 � � ����� �:; 
 � � � ��� � C � � � � C�8
where C �"M � ; � � � � and C�8 M � ; � � � are both included in � � � . This completes the
proof of Theorem 2.1.



3 Construction of Noise Robust Analog Neural Nets

In this section we exhibit a method for making feedforward analog neural nets robust with
regard to arbitrary analog noise of the type considered in the preceding sections. This
method will be used to prove in Corollary 3.2 the missing positive part of the claim of the
main result (Theorem 1.1) of this article.

Theorem 3.1 Let � be any (noiseless) feedforward threshold circuit, and let � M , G�  � 	����
be some arbitrary function with �����
* G �

for �=G�� and �����
* G  �
for�!G  � . Furthermore assume that + 	 � � � �
	�� * are some arbitrary given parameters.

Then one can transform for any given analog noise of the type considered in section 1 the
noiseless threshold circuit � into an analog neural net ��� with the same number of gates,
whose gates employ the given function � as activation function, so that for any circuit input	 ���  � 	����� the output of the noisy analog neural net ��� differs with probability @ �� +
by at most � from the output of � .

Idea of the proof: Let 9 be the maximal fan-in of a gate in � , and let
�

be the maximal
absolute value of a weight in � . We choose � 0 � so large that the density function W��VU * of
the noise vector ( satisfies for each gate with � inputs in ��

	 � � 	�
� W��
	.*M��	
B +6 � for �T� � 	:9:9:9 	 � 9

Furthermore we choose ��� 0 � so large that �����
* @ �  � 1 � � 9)* for � @���� and �����
* B � � � 1 � � 9)* for � B  �&� . Finally we choose a factor � 0 � so large that ��� �� �.*  �Q@�&� . Let ��� be the analog neural net that results from � through multiplication of all weights
and thresholds with � and through replacement of the Heaviside activation functions of the
gates in � by the given activation function � .

The following Corollary provides the proof of the positive part of our main result Theorem
1.1. It holds for any � considered in Theorem 3.1.

Corollary 3.2 Assume that � is some arbitrary finite alphabet, and language ;Q< � � is
of the form ; � C �EDA� � C�8 for two arbitrary finite subsets CJ� and C�8 of � � . Then the
language ; can be recognized by a noisy analog neural net � with any desired reliability? � � �
	 �8 * , in spite of arbitrary analog noise of the type considered in section 1.

Proof. We first construct a feedforward threshold circuit � for recognizing ; , that receives
each input symbol from � in the form of a bitstring � � ���
	�����

(for some fixed �e@� 	�� 8 � � � ), that is encoded as the binary states of � input units of the boolean circuit � . Via
a tapped delay line of fixed length � (which can easily be implemented in a feedforward
threshold circuit by � layers, each consisting of � gates that compute the identity function on
a single binary input from the preceding layer) one can achieve that the feedforward circuit
� computes any given boolean function of the last � sequences from

���
	�����
that were

presented to the circuit. On the other hand for any language of the form ; � CI��@N� � C�8
with C � 	 C�8 finite there exists some � ��� such that for each

� � � � one can decide
whether

� � ; by just inspecting the last � characters of
�

. Therefore a feedforward
threshold circuit � with a tapped delay line of the type described above can decide whether��� ; .

We apply Theorem 3.1 to this circuit � for +\���0����� � � �8  ? 	 �� * 9 We define the set F
of accepting states for the resulting analog neural net ��� as the set of those states where
the computation is completed and the output gate of ��� assumes a value @ � 1 � . Then
according to Theorem 3.1 the analog neural net ��� recognizes ; with reliability ? . To be
formally precise, one has to apply Theorem 3.1 to a threshold circuit � that receives its



input not in a single batch, but through a sequence of � batches. The proof of Theorem 3.1
readily extends to this case.

4 Conclusions

We have exhibited a fundamental limitation of analog neural nets with Gaussian or other
common noise distributions whose probability density function is nonzero on a large set:
They cannot accept the very simple regular language

��� � ���
	��� ��� �
begins with

��
.

This holds even if the designer of the neural net is allowed to choose the parameters of
the Gaussian noise distribution and the architecture and parameters of the neural net. The
proof of this result introduces new mathematical arguments into the investigation of neural
computation, which can also be applied to other stochastic analog computational systems.

We also have presented a method for making feedforward analog neural nets robust against
the same type of noise. This implies that certain regular languages, such as for example��� � ���
	��� ��� �

ends with
��

can be recognized by a recurrent analog neural net with
Gaussian noise. In combination with our negative result this yields a precise characteri-
zation of all regular languages that can be recognized by recurrent analog neural nets with
Gaussian noise, or with any other noise distribution that has a large support.
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