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We investigate through theoretical analysis and computer simulations
the consequences of unreliable synapses for fast analog computations
in networks of spiking neurons, with analog variables encoded by the
current firing activities of pools of spiking neurons. Our results suggest a
possible functional role for the well-established unreliability of synaptic
transmission on the network level. We also investigate computations on
time series and Hebbian learning in this context of space-rate coding in
networks of spiking neurons with unreliable synapses.

1 Introduction

This article explores links between two levels of modeling computation in
biological neural systems: the level of individual synapses and spiking neu-
rons and the network level. Such links are of interest under the hypothesis
that important aspects of the computational function of neuronal activity
can be understood only on the larger scale of networks consisting of hun-
dreds and more neurons. One particular challenge is the task to provide
models for fast analog computation in neuronal systems that are consistent
with experimental data. Thorpe, Fize, and Marlot (1996) and others have
demonstrated that biological neural systems involving 10 or more synaptic
stages are able to carry out complex computations within 100 to 150 ms.
This cannot be be explained through models based on an encoding of ana-
log variables through firing rates of spiking neurons, since the firing rates in
these neural systems are typically well below 100 Hz and interspike inter-
vals are highly variable (Koch, 1999). In addition, it has recently been argued
that synaptic depression makes firing rates above 20 Hz indistinguishable
for the postsynaptic neurons (Abbott, Varela, Sen, & Nelson, 1997).

One approach for explaining the possibility of fast analog computation
relies on the assumption that the relevant analog variables are encoded in
small temporal differences among the firing times of neurons (Thorpe et
al., 1996; Hopfield, 1995; Maass, 1997). These models are able to explain the
possibility of fast analog computation in networks where neuronal firing
and synaptic transmission are highly reliable, or where the average firing

Neural Computation 12, 1679–1704 (2000) c© 2000 Massachusetts Institute of Technology



1680 W. Maass and T. Natschläger

Table 1: Relationships Between Details of Neuronal Hardware and Possible
Computational Functions on the Network Level.

Neuron level Network level

Synaptic unreliability Graded response of firing activity in
pools of neurons, yielding the power
to approximate arbitrary continuous
functions in space-rate coding

Decaying parts of excitatory and in-
hibitory postsynaptic potentials in
combination with refractory effects
and recurrent connections

Emulation of arbitrary given linear
filters with finite and infinite impulse
response with regard to space-rate
coding

Time-sensitive rule for long-term po-
tentiation

Hebbian learning for space-rate cod-
ing

times of pools of neurons encode analog variables on a timescale of a few
milliseconds. Although some evidence for such coding has been found, a
more common type of coding encountered in vertebrate cortex is a popula-
tion coding where information about the stimulus or subsequent responses
of the organism are encoded in a space-rate code, that is, in the fractions
of neurons in various pools that fire within some short time interval (say,
of length 1 between 5 and 10 ms). We refer to this coding scheme as space-
rate coding. We analyze in this article possible links between well-known re-
sponse characteristics of individual neurons and synapses on one hand, and
computational functions of networks of neurons with regard to space-rate
coding on the other hand, as indicated in Table 1. In particular we address
the possible computational role of the unreliability of synaptic transmission,
which has so far been ignored in this context.

In section 2 we show that unreliability of synaptic transmission can be
used as an essential ingredient for a model for fast analog computation in
space-rate coding that spreads firing activity uniformly among all neurons
in a pool. We exhibit a suitable tool from probability theory for analyzing
large-scale effects of unreliable synaptic transmission (the Berry-Esseen the-
orem), and we analyze inherent noise sources of this computational model.
Our theoretical analysis is complemented by results of computer simula-
tions. In section 3 we turn to the question what other types of computations
(besides approximating arbitrary continuous functions between vectors of
analog input and output values) can be induced by synaptic unreliability in
combination with other details of the neuronal hardware on the larger scale
of networks of neurons with space-rate coding. We show that for computa-
tions on time series, the interaction of the time courses of excitatory post-
synaptic potentials’ (EPSPs) and inhibitory postsynaptic potentials’ (IPSPs)
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refractory effects of neurons, and recurrent excitation and inhibition pro-
vides in combination with unreliable synapses the means for realizing in
space-rate coding a rich class of linear filters with finite and infinite impulse
response. Finally in section 4 we briefly address the relationship between
temporal learning rules for individual neurons and Hebbian learning in
space-rate coding.

2 A Model for Fast Analog Computation in a Space-Rate Code

We say the analog variable x ∈ [0, 1] is encoded by a pool U of N neurons
in a space-rate code if during a short time interval of length 1, a total of
Nx neurons fire. If the time interval is short enough, say 1 = 5 ms, one can
assume that each neuron fires at most once during this time interval.

Although there exists substantial empirical evidence that many cortical
systems encode relevant analog variables by such space-rate code, it has
remained unclear how networks of spiking neurons compute in terms of
such a code. Some of the difficulties become apparent if one just wants to
understand, for example, how the trivial linear function f (x) = x/2 can
be computed by such a network if the input x ∈ [0, 1] is encoded by a
space-rate code in a pool U of neurons and the output f (x) ∈ [0, 1/2] is
supposed to be encoded by a space-rate code in another pool V of neurons.
If one assumes that all neurons in V have the same firing threshold and that
reliable synaptic connections from all neurons in U to all neurons in V exist
with approximately equal weights, a firing of a fraction x of neurons in U
during a short time interval will typically trigger almost none or almost all
neurons in V to fire, since they all receive about the same input from U.

Several mechanisms have already been suggested that could in principle
achieve a smooth, graded response in terms of a space-rate code in V instead
of a binary all-or-none firing, such as strongly varying firing thresholds or
different numbers of synaptic connections from U for different neurons v ∈
V (Wilson & Cowan, 1972). Neither option is completely satisfactory, since
firing thresholds of biological neurons appear to be rather homogeneous
and both options would fail to spread average activity over all neurons in
V. Hence they would fail to spread the energy consumption in the neuronal
ensembles and also would make the computation less robust against failures
of individual neurons.

In this section we introduce an alternative model for analog computing
in space-rate coding that takes the well-known stochastic properties of bi-
ological synapses into account. We show that the unreliability of synaptic
transmission provides a very useful mechanism for reliable analog com-
putation in space-rate coding. Our model does not require that the firing
threshold of the neurons involved is different, and it automatically spreads
the firing activity uniformly over all neurons within a pool. In section 2.3, in-
herent noise sources of this model for analog computation are investigated.
In section 2.5, it is shown that our model induces an analog version of the
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familiar model of a synfire chain that is computationally more powerful and
simultaneously more consistent with experimental data than the traditional
“digital” version of a synfire chain.

2.1 Definition of the Computational Model. We start by addressing the
most basic question concerning computations in space-rate coding: how can
the firing activity in a pool V of neurons be related to the firing activity in
n presynaptic pools U1, . . . ,Un of neurons? For simplicity, we assume that
n pools U1, . . . ,Un consisting of N neurons each are given, and we also
assume that all neurons in these pools have synaptic connections to all neu-
rons in another pool V of N neurons.1 We write xi for the analog variable
ranging over [0, 1] that is encoded by space-rate coding in pool Ui and y for
the analog variable ranging over [0, 1] that is encoded by space-rate cod-
ing in pool V. We assume throughout this article that for each pool Ui, all
neurons in Ui are excitatory or all neurons in Ui are inhibitory. By choos-
ing the number n of pools Ui sufficiently large, one can approximate with
this model another type of computational model where instead of discrete
pools of neurons that encode one analog variable each, one has a continu-
ous spatial pattern of firing activity. We address in section 2.4 the question
what functions can be computed by multilayer feedforward networks in
terms of space-rate coding, and we address in section 3 the question of
which additional computational capabilities arise when one takes recurrent
connections involving excitatory and inhibitory neurons into account.

In accordance with standard results from neurophysiology, we assume
in our model that an action potential (“spike”) from a neuron u ∈ Ui triggers
with a certain probability rvu (“nonfailure probability”) the release of one
or several vesicles filled with neurotransmitter at one or several release
sites of the synapses between neurons u ∈ Ui and v ∈ V. The data from
Markram, Lübke, Frotscher, Roth, and Sakmann (1997), Larkman, Jack, and
Stratford (1997), and Dobrunz and Stevens (1997) strongly suggest that in
the case of a release, the amplitude of the resulting EPSP in neuron v is
a stochastic quantity. Consequently we model the amplitude of the EPSP
(or IPSP) in the case of a release by a random variable avu with probability
density function φvu.

Empirical data show that the variance of the distribution φvu is typically
rather high (Markram, Lübke, Frotscher, Roth, & Sakmann, 1997; Larkman
et al., 1997; Stevens & Zador, 1998). This high variability can be traced back
to two sources. First, it is uncertain whether a vesicle is released at a single
synaptic release site in response to an action potential from the presynap-
tic neuron. Thus, the amplitude of the postsynaptic potential (PSP) in the
postsynaptic neuron v varies in dependence of the actual number of vesicle
releases that take place at the different synaptic release sites between neu-

1 Our results remain valid for connection patterns given by sparser random graphs.
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Figure 1: (A) Computer simulation of the model described in section 2.1 with
a time interval 1 of length 1 = 5 ms for space-rate coding and neurons mod-
eled by the spike-response model of Gerstner (1999b). We have chosen n = 6, a
pool size N = 200, and 〈w1, . . . ,w6〉 = 〈10,−20,−30, 40, 50, 60〉 for the effective
weights. Each dot is the result of a simulation with an input 〈x1, . . . , x6〉 selected
randomly from [0, 1]6 in such a way that

∑n
i=1 wixi covers the range [−10, 70]

almost uniformly. The y-axis shows the fraction y of neurons in pool V that fire
during a 5 ms time interval in response to the firing of a fraction xi of neurons
in pool Ui for i = 1, . . . , 6 during an earlier time interval of length 5 ms. The
solid line is a plot of σ(

∑n
i=1 wixi) as described in the text (cf. equation 2.6).

(B) Distribution of nonfailure probabilities rvu for synapses between the pools
U4 and V underlying this simulation. (C) Example of a probability density func-
tion φvu of EPSP amplitudes as used for this simulations. This corresponds to a
synapse with five release sites and a release probability of 0.3. For details about
the simulation, see the appendix.

rons u and v. Second, even at a single release site, the amplitude of the EPSP
(“quantal size”) caused by a vesicle release at this site varies from trial to
trial (Dobrunz & Stevens, 1997; Auger, Kondo, & Marty, 1998).

Most of our results—in particular the results in the following section—
hold for arbitrary probability density functions φvu and arbitrary values
of the parameters rvu. In section 2.3 we address the question of what effect
specific probability density functions φvu may have on analog computations
in terms of space-rate coding.

The equation for the probability density function φvu for the case of mul-
tiple release sites and a gaussian distribution of the quantal size at each
release site, which is modeled in our computer simulations, is discussed in
the appendix. Figure 1C shows an example of φvu for a synapse with five
release sites.



1684 W. Maass and T. Natschläger

2.2 Graded Response Through Unreliable Synapses. In this section
we introduce analytical tools for estimating the firing activity y in pool V
in terms of the firing activities x1, . . . , xn in n presynaptic pools U1, . . . ,Un.
We show that y can basically be approximated by a function of a weighted
sum of the xi, although some unexpected complications will turn up in this
analysis. First, we demonstrate that the model defined above is indeed able
to produce a graded output y encoded in a space-rate code in pool V such
that the activity is uniformly distributed over all neurons v ∈ V. We prove
this fact theoretically by employing a special version of the central limit
theorem of probability theory—the Berry-Esseen theorem. Our theoretical
results are then compared with computer simulations of our model.

Consider an idealized mathematical model where all neurons that fire in
the pool Ui fire synchronously at time Tin, and the probability that a neuron
v ∈ V fires (at time Tout) can be described by the probability that the sum
hv of the amplitudes of EPSPs and IPSPs resulting from firing of neurons
in the pools U1, . . . ,Un exceeds the firing threshold θ (which is assumed
to be the same for all neurons v ∈ V). We assume in this section that the
firing rates of neurons in pool V are relatively low, so that the impact of
their refractory period can be neglected. We investigate refractory effects in
section 3. The random variable (r.v.) hv is the sum of random variables hvu
for all neurons u ∈ ⋃n

i=1 Ui , where hvu models the contribution of neuron
u to hv. We assume that hvu is nonzero only if neuron u ∈ Ui fires at time
Tin (which occurs with probability xi)2 and if the synapse between u and v
releases one or several vesicles (which occurs with probability rvu whenever
u fires). If both events occur, then the value of hvu is chosen according to some
probability density functionφvu. The functionsφvu, as well as the parameters
rvu, are allowed to vary arbitrarily for different pairs u, v of neurons. For each
neuron v ∈ V, we consider the sum hv =

∑n
i=1
∑

u∈Ui
hvu of the r.v.’s hvu, and

we assume that v fires at time Tout if and only if hv ≥ θ . Although the r.v.’s
hvu may have quite different distributions (for example, due to different φvu
and rvu), their stochastic independence allows us to approximate the firing
probability P

{
hv ≥ θ

}
through a normal distribution 8. The Berry-Esseen

theorem (Petrov, 1995) implies that

|P{hv ≥ θ
}− (1−8(θ; µv, σv))| ≤ 0.7915

ρv

σ 3
v
, (2.1)

where 8(θ; µv, σv) denotes the normal distribution function with mean
µv and variance σ 2

v . The three moments occurring in equation 2.1 can be
related to the r.v.’s hvu through the equations µv =

∑n
i=1
∑

u∈Ui
E[hvu], σ 2

v =∑n
i=1
∑

u∈Ui
Var[hvu], and ρv =

∑n
i=1
∑

u∈Ui
E[|hvu − E[hvu]|3]. According to

2 This holds if the pool size is large enough that we can treat xi (y) as the probability
that a neuron u ∈ Ui (v ∈ V) will fire once during a certain input (output) interval of
length 1.
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the definition of the r.v. hvu we have E[hvu] = xirvuāvu and E[h2
vu] = xirvuâvu,

where āvu =
∫

aφvu(a)da denotes the mean EPSP (IPSP) amplitude and âvu =∫
aφvu(a)da denotes the second moment. Hence we can assign to µv and σv

in equation 2.1 the values

µv =
n∑

i=1

∑
u∈Ui

xirvuāvu, (2.2)

σ 2
v =

n∑
i=1

∑
u∈Ui

(
xirvuâvu − x2

i r2
vuā2

vu

)
. (2.3)

A closer look reveals that the right-hand side of equation 2.1 scales like
N−1/2.3 Hence, equation 2.1 implies that for large N, we can approximate
the firing probability P

{
hv ≥ θ

}
by the term 1−8(θ; µv, σv), which smoothly

grows with µv. The gain of this sigmoidal function depends on the size of
σv. In particular, if synaptic transmission were reliable, this function would
degenerate to a step function. With the definition of the formal weights
wvi := ∑

u∈Ui
rvuāvu, we have µv =

∑n
i=1 wvixi, and hence 1 − 8(θ; µv, σv)

smoothly grows with the weighted sum
∑n

i=1 wvixi of the inputs xi.
So far we have considered only the probability P

{
hv ≥ θ

}
that a single

neuron v ∈ V will fire, but we are really interested in the expected fraction
y of neurons in pool V that will fire in response to a firing of a fraction xi of
neurons in the pools Ui for i = 1, . . . ,n. According to equation 2.1, one can
approximate y for sufficiently large pool sizes N by

y = 1
N

∑
v∈V

P
{
hv ≥ θ

} = 1
N

∑
v∈V

1−8(θ; µv, σv) .

Hence y is approximated by an average of the N sigmoidal functions
1 −8(θ; µv, σv). If the weights wvi have similar values for different v ∈ V,
one can expect that y grows smoothly with the weighted sum µ̄ =∑n

i=1 wixi,
where we write wi =

∑
v∈V wvi/N for the “effective weights” wi between the

pools of neurons Ui and V.
In order to test these theoretical predictions for an idealized mathematical

model, we have carried out computer simulations of a more detailed model
consisting of more realistic models for spiking neurons and time intervals

3 More precisely, the right-hand side of equation 2.1 scales like N−1/2 if for all N, the

average value of the terms E[
∣∣hvu − E[hvu]

∣∣3] is uniformly bounded from above and the
average value of the terms Var[hvu] is uniformly bounded from below by a constant > 0
for i ∈ {1, . . . ,n} and u ∈⋃n

i=1 Ui. The latter can be achieved only for inputs where xj > 0
for some j, since otherwise Var[hvu] = 0 for all u ∈ Ui and all i ∈ {1, . . . ,n}. But in the case
xi = 0 for all i ∈ {1, . . . ,n}, both P

{
hv ≥ θ

}
and 1−8(θ; µv, σv) have value 0 if θ > 0 and

hence the left-hand side of equation 2.1 has value 0.
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Iin and Iout of length1 = 5 ms for space-rate coding. The resulting fraction y
of neurons in pool V that fired during Iout was measured for a large variety
of different inputs 〈x1, . . . , x6〉 ∈ [0, 1]6 encoded through the fractions of
firing neurons in U1, . . . ,U6 during an earlier time interval Iin.4 It is shown
in Figure 1A that y can be approximated quite well by a suitable sigmoidal
“activation function” σ (more precisely, by the function σ derived in equa-
tion 2.6 applied to a weighted sum

∑6
i=1 wixi of the inputs x1, . . . , x6. Note

that σ has not been implemented explicitly in our computational model,
but rather emerges implicitly through the large-scale statistics of the firing
activity.

The deviation of the data points in Figure 1A from the sigmoidal function
σ(
∑n

i=1 wixi) (solid line) can be traced back to two independent sources of
noise. One source of noise is stochastic fluctuations due to the finite pool
size N = 200. This type of noise is guaranteed to disappear for N → ∞
with N−1/2 according to equation 2.1. Another source of noise is of a more
systematic nature and is predicted by our preceding theoretical analysis (cf.
equation 2.1). For large pool sizes N, the firing probability of a neuron v in
pool V converges to 1−8(θ; µv, σv). This function depends not just on the
weighted sum µv =

∑n
i=1 wvixi, but also on another function σv of the input

vector 〈x1, . . . , xn〉. This fact, which causes a noise for computing in space-
rate coding that dominates the sampling noise already for moderate pool
sizes (cf. Figure 2), will be addressed in the next section. In the following,
the term systematic noise refers to the fact that the output y in space-rate code
does not merely depend on a single variable µ̄ =∑n

i=1 wixi but is actually a
function that depends in a more complex way on the input 〈x1, . . . , xn〉.

2.3 Analysis of the Systematic Noise. At the end of the preceding sec-
tion, we pointed out that the output y of our model for computing in space-
rate coding depends not just on the weighted sum

∑n
i=1 wixi of the inputs

x1, . . . , xn. Here we provide tools for analyzing on what other quantities the
output y may depend, and we exhibit a specific type of synaptic connectivity
that minimizes the impact of this type of systematic noise.

Equation 2.1 shows that if one wants to approximate the firing probability
P
{
hv ≥ θ

}
of an arbitrary neuron v in pool V by a function of the weighted

sum µv of the firing probabilities xi in pools Ui, it is indeed necessary that
σv also can be approximated by a function of µv. This follows easily from
the equation 8(θ; µv, σv) = 8((θ − µv)/σv; 0, 1). In order to analyze the
possibilities for approximating σv by a function of µv, we restate σ 2

v as

σ 2
v =

n∑
i=1

ŵvixi −
n∑

i=1

x2
i

∑
u∈Ui

r2
vuā2

vu with ŵvi :=
∑
u∈Ui

rvuâvu . (2.4)

4 The firing times of the individual neurons are distributed uniformly over Iin.
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Figure 2: Quantitative study of the noise underlying the computation in our
model. The model is constructed in exactly the same way as described in Fig-
ure 1, with the same values of the weights wi. (A) The empirical standard de-
viation (std) of the outputs y of 200 individual simulations in dependence of
the pool size N for two cases. We used the same input x(0) = 〈x(0)1 , . . . , x(0)n 〉 for
all 200 simulations and measured the standard deviation λ0 of the observed
outputs. Thus, λ0 describes the contribution of the stochastic fluctuations to the
total noise. In order to test to what extent the response depends just on µ̄, we
generated 200 different inputs x = 〈x1, . . . , xn〉 such that

∑n
i=1 wixi always was

equal to µ̄(0) =∑n
i=1 wix

(0)
i = 24 and measured the standard deviation λt of the

resulting output y, which describes the amount of the total noise. (B) The ratio
λt/λ0 between the total noise and the stochastic fluctuations.

We will focus on scenarios where the second term
∑n

i=1 x2
i
∑

u∈Ui
r2

vuā2
vu of

equation 2.4 can be neglected for sufficiently large N. This can be achieved
if either the nonfailure probabilities rvu or the mean EPSP (IPSP) ampli-
tudes āvu scale such that the weights wvi remain bounded for large N.5

Under this assumption, one can approximate σ 2
v by some second-order

polynomial Aµ2
v + Bµv + C in µv if the angle ϕ between the weight vector

wv = 〈wv1, . . . ,wvn〉 and the “virtual” weight vector ŵv = 〈ŵv1, . . . , ŵvn〉
that is defined in equation 2.4 is rather small.6

One can easily show that σ 2
v can be expressed exactly as a function of µv

if and only if ϕ = 0 or ϕ = π . Hence it is worthwhile to analyze what type of

5 The term
∑n

i=1 x2
i
∑

u∈Ui
r2

vuā2
vu converges to 0 for N→∞ if, for example, the empir-

ical standard deviation of the terms rvuāvu over u ∈ Ui does not grow much faster than the

mean wvi/N =
∑

u∈Ui
rvuāvu/N for N→∞, for example, if

(
1
N

∑
u∈Ui

(rvuāvu − wvi
N )2

)1/2 ≤
wvi
N . This appears to be a quite reasonable assumption, and it furthermore implies that∑

u∈Ui
r2

vuā2
vu ≤ 2

N · w2
vi. Hence the second term

∑n
i=1 x2

i
∑

u∈Ui
r2

vuā2
vu in equation 2.4

converges to 0 for N→∞ if the “weights” wvi remain bounded for N→∞.
6 ϕ is defined by cosϕ = (wv · ŵv)/(‖wv‖ · ‖ŵv‖).
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synaptic connectivity structure can achieve this. Obviously ϕ = 0 (ϕ = π )
holds if and only if there exists a constant γ > 0 (γ < 0) such that ŵvi = γwvi
for all i ∈ {1, . . . ,n}. Note that this implies that all pools Ui consist of excita-
tory (ϕ = 0) or inhibitory (ϕ = π ) neurons, since ŵvi ≥ 0 by definition of ŵvi.
In the following, we consider the case where all neurons are excitatory. The
condition ŵvi = γwvi for all i ∈ {1, . . . ,n} with a common constant γ > 0
is quite difficult to achieve in the case of heterogeneous weights wvi for dif-
ferent i. However, one scenario in which this can in principle be achieved
even with heterogeneous nonnegative weights wvi is that where there exists
for each neuron u ∈⋃n

i=1 Ui just a single release site between u and v with a
common stereotyped probability density function φ for the amplitudes avu
of the EPSPs caused by a synaptic release. For such architecture, the non-
failure probabilities rvu (equal to the release probability in that case) can be
chosen arbitrarily in order to achieve a desired heterogeneous assignment
of nonnegative weights wvi for i ∈ {1, . . . ,n}, while the condition ŵvi = γwvi
for all i ∈ {1, . . . ,n}will automatically be satisfied with a common constant
γ > 0. This follows easily from the fact that for a common stereotyped prob-
ability density function φ, one gets wvi = ā

∑
u∈Ui

rvu and wvi = â
∑

u∈Ui
rvu

with ā = ∫ aφ(a)da and â = ∫ a2φ(a)da.
A connection from a neuron u ∈ Ui to a neuron v ∈ V via a single

release site also seems to be advantageous with regard to synaptic plas-
ticity. In the case of a single release site, it is a reasonable assumption
that the nonfailure probabilities rvu (equal to the release probability in
that case) and the distribution of the EPSP amplitudes φvu can be cho-
sen independently.7 This implies that one can approximate the effective
weights wvi by 1

N

(∑
u∈Ui

āvu
) (∑

u∈Ui
rvu
)

and the “virtual weights” ŵvi by
1
N

(∑
u∈Ui

âvu
) (∑

u∈Ui
rvu
)
. Thus, the condition ŵvi = γwvi for all i ∈ {1, . . . ,n}

reduces to

1
N

∑
u∈Ui

âvu = γ

N

∑
u∈Ui

āvu for all i ∈ {1, . . . ,n}. (2.5)

Assume that for a given set of effective and virtual weights, the relation
ŵvi = γwvi holds for all i ∈ {1, . . . ,n}, and subsequently the weights wvi are
subject to change due to some plasticity mechanism. In order to maintain
the property that ŵvi = γwvi for all i, such a change is best implemented
by changes in the nonfailure probabilities rvu, since equation 2.5 holds in-
dependent of their values. If the weight change would be implemented by
changes in the mean EPSP amplitudes āvu, then the average of the second
moments âvu would have to change proportionally to keep equation 2.5
valid. If one considers the well-known relation âvu = ā2

vu + ã2
vu, where ã2

vu is

7 For synapses with more than one release site, the assumption that rvu can be chosen
independently from φvu does not hold (see the appendix for an example).
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Figure 3: Quantitative study of the noise underlying the computation in our
model if all connections consist of just a single release site. The model is
constructed in a similar way as described in Figure 1, with 〈w1, . . . ,w6〉 =
〈10, 20, 30, 40, 50, 60〉 for the effective weights. The simulation protocol is the
same as described in the caption of Figure 2. (A) Stochastic fluctuations (λ0) and
the total noise (λt). (B) Ratio between λ0 and λt has a value of about 1 for N ≥ 200.
This shows that the output y of the network depends just on the weighted sum
µ̄ =∑n

i=1 wixi.

the variance of the distribution φvu (ã2
vu =

∫
φvu(z)(z− āvu)

2 dz), it becomes
even clearer that such a change would involve complex changes in the dis-
tributions φvu. Hence, in the case of connections with single release sites,
it is advantageous to implement weight changes through changes in the
nonfailure probabilities rather than through changes in the distribution of
the EPSP amplitudes.

Thus, our preceding analysis exhibits a possible computational advan-
tage of synaptic connections consisting of single release sites. At first sight,
such connectivity structure appears to be quite undesirable because of the
high unreliability of such synaptic connections. However, our preceding
arguments show that such connectivity structure supports precise analog
computations in space-rate coding better than multiple release sites. To-
gether with equation 2.5, it induces an angle ϕ = 0 between the vectors
〈wv1, . . . ,wvn〉 and 〈ŵv1, . . . , ŵvn〉, thereby allowing that the resulting firing
activity y in pool V depends on only µv =

∑n
i=1 wvixi for arbitrary values

x1, . . . , xn ∈ [0, 1] of presynaptic pool activities (see Figure 3).
Now we consider the case where the angle ϕ between the weight vector

wv = 〈wv1, . . . ,wvn〉 and the “virtual” weight vector ŵv = 〈ŵv1, . . . , ŵvn〉
is rather small but 6= 0. We will show that in this case, we can still ap-
proximate σ 2

v well by the expression B0µv + C0 for B0 := w̄v · ŵ/‖w̄v‖2
and C0: = 1

2
∑n

i=1(ŵvi − B0wvi). In fact, this specific linear expression in
µv provides an approximation to σ 2

v that is in a heuristic sense optimal
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among all second-order polynomials Aµ2
v + Bµv + C in µv. To see this,

we choose the parameters A, B, and C such that the average error E =∫
[0,1]n

(
σ 2

v − (Aµ2
v + Bµv + C)

)2 dx of such an approximation is minimized.
As shown in the appendix, the conditions δE

δA = 0, δE
δB = 0, and δE

δC = 0
imply for N → ∞ that A = 0, B = B0, and C = C0. For these val-
ues of A, B, and C, the average error E has the minimum value Emin =∫

[0,1]n(σ
2
v − (B0µv + C0))

2dx = ‖ŵv‖2(1 − cos2 ϕ)/12. Emin decreases with
decreasing ϕ, especially Emin = 0 if ϕ = 0. This observation indicates that
one can approximate the firing probability P

{
hv ≥ θ

}
of neuron v in pool V

by the sigmoidal function 1 − 8(θ; µv, (B0µv + C0)
1/2) of the single vari-

able µv if the angle ϕ is not too large. Furthermore, if we assume that the
values wvi and ŵvi do not differ too much for different neurons v ∈ V, we
can approximate the output y of the network by

y ≈ 1−8
(
θ; µ̄, (B0µ̄+ C0)

1/2
)

(2.6)

for µ̄ = ∑n
i=1 wixi and wi = (1/N)

∑
v∈V wvi. This theoretical prediction is

supported by our computer simulations. The function of µ̄ =∑n
i=1 wixi that

appears on the right-hand side of equation 2.6 is drawn as a solid line in
Figure 1A.

Complications arise if some of the weights wvi are positive and some are
negative. In this case, it is impossible to satisfy the condition ŵvi = γwvi
with a common constant γ 6= 0 for all i ∈ {1, . . . ,n}. Hence, σ 2

v depends not
only onµv, and y depends not only onµv. This indicates that the systematic
noise is larger in the case where one considers a combination of inhibitory
and excitatory input. However, the simulations reported in Figure 1 show
that even in this case, the output y of the network approximates a sigmoidal
function of µ̄ =∑n

i=1 wixi.

2.4 Multilayer Computations. The preceding arguments show that ap-
proximate computations of functions of the form 〈x1, . . . , xn〉 → y = σ

(
∑n

i=1 wixi), with inputs and output in space-rate code, can be carried out
within 10 ms by a network of spiking neurons. Hence, the universal approx-
imation theorem for multilayer perceptrons implies that arbitrary continu-
ous functions f : [0, 1]n → [0, 1]m can be approximated with a computation
time of not more than 20 ms by a network of spiking neurons with three
layers. Thus, our model provides a possible theoretical explanation for the
empirically observed very fast multilayer computations in biological neural
systems that were mentioned in section 1.

Results of computer simulations of the computation of a specific func-
tion f in space-rate coding that requires a multilayer network because it
interpolates the boolean function XOR are shown in Figure 4.
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Figure 4: (A) Plot of a function f (x1, x2): [0, 1]2 → [0, 1], which interpolates
XOR. Since f interpolates XOR, it cannot be computed by a single sigmoid unit.
(B) Computation of f by a three-layer network in space-rate coding with spike-
response model neurons (N = 200) according to our model (for details, see the
appendix).

2.5 Consequences for Synfire Chains. Our computational model also
throws new light on the familiar model of a synfire chain (Abeles, 1991).
There one considers a longer chain of pools of neurons, with large diverging
and converging connectivity between adjacent pools in the chain. Abeles,
Bergman, Margalit, and Vaadia (1993) pointed out that this architecture
has the property that relatively synchronous firing in the first pool triggers
even more synchronous firing in the subsequent pools of the chain. We have
shown in this article that if one takes synaptic unreliability into account, a
synchronous firing of a certain fraction x of neurons in the first pool will
cause a certain fraction y of neurons in the subsequent pools to fire syn-
chronously. Whereas Abeles (1991) considered only the situation where x
and y are close to 1, our analysis shows that more subtle information pro-
cessing can be carried out by a synfire chain. One can arrange that y is a
smooth function of x, for a wide range of values for x. Such “graded acti-
vation” of synfire chains allows substantially more complex computations
in networks of linked and/or reverberating synfire chains, since it supports
the implementation of “graded pointers” from one synfire chain to other
ones.

The original version and our analog version of a synfire chain (based on
unreliable synapses) make slightly different predictions regarding the firing
behavior of individual neurons in the synfire chain. In the analog version of
a synfire chain, only a certain fraction y of neurons will fire in a pool V of a
chain, where y may assume arbitrary values between 0 and 1. Furthermore,
for repeated activations of the synfire chain with the same firing activity x
in the first pool, the actual set of neurons in V that fire will change from trial
to trial. Hence, precisely timed firing patterns among neurons in different
pools of the chain would not occur every time when the first pool is activated
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with the same x, but just with a certain probability that is somewhat higher
than for completely randomly firing neurons. This prediction appears to be
consistent with published data (Abeles et al., 1993).

3 Analog Computation on Time Series in a Space-Rate Code

We showed in section 2 that biological neural systems with space-rate coding
have at least the computational power of multilayer perceptrons. In this
section, we demonstrate that they have strictly more computational power.
This becomes clear if one considers computations on time series rather than
on static batch inputs, as in section 2.

We now analyze the behavior of our computational model if the firing
probabilities in the pools Ui change with time. Writing xi(t) (y(t)) for the
probability that a neuron in pool Ui (V) fires during the tth time window of
length 1 (e.g., for 1 in the range between 1 and 5 ms), our computational
model from section 2 maps a vector of n analog time series {xi(t)}t∈N onto
an output time series {y(t)}t∈N (where (N = {0, 1, 2, . . .}).

As an example, consider a network that consists of one presynaptic pool
U1 connected to the output pool V with the same type of synapses as dis-
cussed in section 2. In addition, there are feedback connections between
individual neurons v ∈ V. The results of simulations reported in Figures 5
and 6 show that this network computes an interesting map in the time-series
domain: the space-rate code in pool V represents a sigmoidal function σ (as
in section 2) applied to the output of a bandpass filter. Figure 5B shows
the response of such a network to a sine wave with some bursts of activ-
ity added on top (see Figure 5A). Figures 6A and 6B show the frequency
response of the bandpass filter that is implemented by this network of spik-
ing neurons (see the appendix for the definition of the frequency response).
Figure 5C shows the output of another network of spiking neurons (which
approximates a lowpass filter) to the same input (shown in Figure 5A). The
theoretical analysis of these networks will be presented in section 3.3.

To analyze theoretically the computational power of such networks of
spiking neurons in the time-series domain, we use the spike-response model
(Gerstner, 1999b). We will focus on the situation where one can neglect the
nonlinear effects of the sigmoidal function σ ; we consider time series of the
form xi(t) = x0 + x̃i(t) and y(t) = y0 + ỹ(t), where the magnitudes of the
signals x̃i(t) and ỹ(t) are small enough that σ can be approximated in this
range by a linear function x 7→ Kx.

3.1 Taking the Time Course of Postsynaptic Potentials into Account.
We model the effect of a firing of a neuron u ∈ Ui at time k on the membrane
potential of a neuron v ∈ V at time t by a “response function” εi(t − k), as
in the spike-response model (Gerstner, 1999b). Such response function has
the typical shape of an EPSP or IPSP. It is usually described mathematically
as a difference of two exponentially decaying functions (see the appendix).
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Figure 5: (A) Response of two different networks to the same input. (B) Response
of a network that approximates a bandpass filter. (C) Response of a network that
approximates a low-pass filter. The gray-shaded bars in B and C show the actual
measured fraction of neurons that fire in pool V of the network during a time
interval of length 5 ms in response to the input activity in pool U1 shown in A.
The solid lines in B and C are plots of the output predicted by equation 3.4. For
details about the parameters, see the appendix.

Figure 6: (A) Amplitude response |H( f )| and (B) phase response ψ( f ) of the
filter (bandpass) implicitly implemented by the network of spiking neurons
described at the beginning of section 3 (see the appendix for the definition of
|H( f )|, ψ( f ), and the parameters of the network). Solid lines are plots of the
amplitude and phase response predicted by the theory presented in section 3.3.
Dots are simulation results for the approximating network of spiking neurons
(see the appendix for details).
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If one takes this time course of EPSPs and IPSPs into account but ignores
the impact of v’s firing on its own membrane potential, our arguments from
section 2 imply that one can write the expected value µ(t) of the membrane
potentials of neurons v ∈ V at time t as

µ(t) =
n∑

i=1

wi

t∑
k=0

εi(k)xi(t− k) . (3.1)

The “weights” wi result from the release probabilities and distributions of
PSP amplitudes as described in section 2. We will ignore the impact of
synaptic dynamics and assume that these weights wi do not depend on t.

3.2 Taking Refractory Effects into Account. When the resulting firing
probabilities in pool V become sufficiently large, the refractory effects of
neurons v ∈ V start to affect the resulting computation on time series. We
then have to replace equation 3.1 by

µ(t) =
n∑

i=1

wi

t∑
k=0

εi(k)xi(t− k)+
t∑

k=1

η(k)y(t− k), (3.2)

where η(k) typically assumes a very large negative value for a few ms,
and then decays exponentially with a relatively small time constant (Gerst-
ner, 1999b). This yields a special case of an infinite impulse response time-
invariant linear filter, as we show in the next section in a more general
context. Since different specific firing properties of specific neurons, such as
adaptation or rhythmic firing, correspond in this spike-response model to
different refractory functions η(k) of specific neurons, a rich class of different
infinite impulse response filters may arise in this way in biological neural
systems.

3.3 Adding Recurrent Connections in Pool V. We now assume that in
addition to the model defined in section 2 there are m different kinds of
recurrent connections among neurons in pool V, with different response
functions ρj(k) and weights w̃j, j = 1, . . . ,m. We assume that the large-scale
structure of these recurrent connections is of the same type as those between
pools Ui and V; that is, we assume that these are connections with unreliable
synapses. Therefore, the weights w̃j also result from release probabilities
and PSP amplitude distributions as described in section 2. We then arrive
at the following equation for the average membrane potential of neurons in
pool V:

µ(t) =
n∑

i=1

wi

t∑
k=0

εi(k)xi(t− k)+
t∑

k=1

η(k)y(t− k)+
m∑

j=1

w̃j

t∑
k=1

ρj(k)y(t− k).
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If t is sufficiently large such that εi(t′) = ρj(t′) = 0 for t′ ≥ t, then for
xi(t) = x0+ x̃i(t) and y(t) = y0+ ỹ(t), one can rewriteµ(t) asµ(t) = µ0+ µ̃(t)
with

µ0 = x0

n∑
i=1

wi

∞∑
k=0

εi(k)+ y0

∞∑
k=1

η(k)+ y0

m∑
j=1

w̃j

∞∑
k=1

ρj(k)

and

µ̃(t) =
n∑

i=1

wi

t∑
k=0

εi(k)x̃i(t− k)+
t∑

k=1

η(k)ỹ(t− k)+
m∑

j=1

w̃j

t∑
k=1

ρj(k)ỹ(t− k).

We showed in section 2 that under certain conditions, one can approximate
the firing activity y(t) in pool V by a function of the form σ(µ(t)), for some
suitable sigmoidal function σ (see equation 2.6). Since we consider only
small signals x̃i(t) and ỹ(t), we can make the approximation ỹ(t) = K · µ̃(t)
for some constant K, which depends on the sigmoidal function σ . This yields
for ỹ(t) the recursive equation

ỹ(t) = K ·
n∑

i=1

wi

t∑
k=0

εi(k)x̃i(t− k)

+ K
t∑

k=1

η(k)ỹ(t− k)+ K
m∑

j=1

w̃j

t∑
k=1

ρj(k)ỹ(t− k). (3.3)

We now show that equation 3.3 describes a very powerful computa-
tional model for computations on time series. This becomes clear if one
considers just the special case where xi(t) = x(t) (hence, x̃i(t) = x̃(t) for all
i ∈ {1, . . . ,n}). We then have

ỹ(t) =
t∑

k=0

bkx̃(t− k)−
t∑

k=1

akỹ(t− k) (3.4)

with bk = K
∑n

i=1 wiεi(k) and ak = −Kη(k) − K
∑m

j=1 w̃jρj(k). For arbitrary
real valued numbers bk and ak for k ∈ N with bk = ak = 0 for k > k0
(where k0 is some sufficiently large constant)8 this is the general form of
an infinite impulse response (IIR) time-invariant linear filter (see Haykin,
1996; Back & Tsoi, 1991). Furthermore if each response function εi(·) and
ρj(·) is represented as a difference of two exponentially decaying functions
and η(·) is also represented as an exponentially decaying function, then
the kernels K

∑n
i=1 wiεi(k) and −Kη(k) − K

∑m
j=1 w̃jρj(k) in equation 3.4 are

8 Since in biological systems the responses to individual spikes vanish after some time,
it is a reasonable approximation to set εi(k) = ρj(k) = η(k) = 0 for k > k0.
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weighted sums of exponentially decaying functions of the form e−k/τ for
various different values of τ . In that case, one can easily show that the
map from arbitrary input functions x̃(t) to the output ỹ(t) can in principle
approximate any given time-invariant linear filter with IIR for any finite
number t of discrete time steps.9 In the case where ak = 0 for all k ∈ N,
that is, ỹ(t) = ∑t

k=0 bkx(t − k), the resulting mapping from x̃(t) to ỹ(t) is a
time-invariant linear filter with finite impulse response (FIR). Hence, if there
are no recurrent connections and one can neglect the refractory effects, our
model can still approximate any given FIR filter.

One can build a large class of practically relevant filters with the help
of such FIR and IIR filters, including good approximations to low-pass and
bandpass filters (see Figure 6). Note that different architectures of recurrent
circuits with different delays and different types of neurons involved in
the recurrent loop give rise to a large variety of different coefficient vectors
〈a1, . . . , ak0〉. The variety of different vectors 〈b0, . . . , bk0〉 appears to be more
limited in comparison, since time courses of PSPs in isolated neurons are
relatively uniform. However, it is shown in Bernander, Douglas, Martin, and
Koch (1991) that the level of background activity in cortical neurons may
change the time constants of PSPs considerably. Hence, such a mechanism
supports the implementations of a large variety of vectors 〈b0, . . . , bk0〉.

The preceding analysis implies that assuming that one can approximate
any given real-valued sequences bk and ak on any finite interval, the output
of the network of spiking neurons can approximate in space-rate coding
on any finite time interval the saturated version of any given linear time-
invariant filter with finite and infinite impulse response. One may view this
result as a universal approximation theorem for linear filters by networks
of spiking neurons.

Back and Tsoi (1991) have shown that an artificial neural network con-
sisting of IIR filters as “synapses” and two layers of sigmoidal gates as “neu-
rons” can be adjusted (via gradient descent for the parameters involved) to
approximate for low-pass-filtered white noise as input in its output a very
complex given time series. Our combined results from section 2 and the
results of this section show that in principle, an arbitrary network of the
type considered by Back and Tsoi (1991) can be implemented by a network
of spiking neurons in space-rate coding. Note, however, that in this imple-

9 For a rigorous proof of that result, one just needs to observe that any function
g: {0, . . . , k0} → R can be approximated arbitrarily closely by functions of the form
f (k) = ∑n

i=1 wiεi(k), where each function εi(·) is a difference of two exponentially de-
caying functions. This approximation result relies on two facts: that any continuous func-
tion can be approximated arbitrarily closely by a polynomial on any bounded interval
(approximation theorem of Weierstrass) and that the variable transformation u = − log x
for u ∈ [0,∞) transforms an exponentially decaying function e−u/τ over [0, ∞) into the
function x1/τ over (0, 1]. It becomes clear from this proof that it suffices to consider just
time constants τ ≤ 1 for that purpose.
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mentation, each IIR filter is implemented not by a single synapse but by a
pool of spiking neurons.

An interesting aspect of this analysis is that these computations in the
time-series domain with space-rate coding make essential use of two aspects
of neuronal dynamics that had received little attention in preceding com-
putational models for neural systems: the specific forms of the refractory
functions η and of the decaying parts of PSPs.

4 Hebbian Learning for Space-Rate Coding

The model for space-rate coding based on unreliable synapses that we an-
alyzed in section 2 has the characteristic property that the actual sets of
neurons that fire will vary from trial to trial, even for the same input. In this
section, we show that this property is quite desirable from the point of view
of learning. Most theoretically attractive learning rules for a computational
unit in an artificial neural net, such as the Hebb rule, require a weight change
1wi that depends on the product xiy of the ith analog input xi and the analog
output y of the unit. If these values xi and y are encoded in a network of
spiking neurons by a space-rate code, it is not clear how this product xiy
can be “computed” locally by a biological synapse or by the two spiking
neurons that the synapse connects.

On the other hand Markram, Lübke, Frotscher, and Sakmann (1997) have
shown that biological synapses regulate their efficacies in dependence of the
temporal relationship between pre- and postsynaptic firing. For example,
a biological synapse may increase its release probability by an amount β if
the postsynaptic neuron v fires within 100 ms after the presynaptic neuron
u. When we apply this rule in the context of our computational model from
section 2, we see that the fraction of synapses between neurons u ∈ Ui and
v ∈ V so that v fires within 100 ms after the firing of u has an expected value of
xiy. Hence the expected fraction of synapses between Ui and V whose release
probability is increased by β according to the rule from Markram, Lübke,
Frotscher, and Sakmann (1997) is xiy. This causes an average change in
release probability between the pools Ui and V proportional to xiy , although
the value of the product xiy is nowhere explicitly computed in the network.

A closer look shows that this average change in release probability has the
desired effect only of increasing the response y after a few repetitions under
a special condition: if the actual sets of neurons in the pools that fire vary
from trial to trial. Such trial-to-trial variability of the specific neurons that
fire is inherent in our model for analog computation in space-rate coding
presented in section 2, in contrast to previous models, which ignore the
large-scale effects of synaptic unreliability.

We have compared the relationship between weight changes resulting
from Hebb’s learning rule for an artificial neural network and local changes
of synaptic efficacy based on temporal relationship of pre- and postsynap-
tic firing according to Markram, Lübke, Frotscher, and Sakmann (1997) for
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Figure 7: (A, B) Typical change in the distribution of release probabilities
at synapses between U1 and V during learning as described in the text,
(A) before and (B) after learning. (C) Distribution of the normalized errors
|wnew

i −Wnew
i |/|wmax| for all i ∈ {1, . . . , 6} where Wnew

i is the ideal value of the
updated weight according to the Hebb rule and wnew

i = (1/N)∑v∈V

∑
u∈Ui

rvuāvu

is the “effective weight” resulting from applications of Markram’s rule in our
simulated network of spiking neurons (|wmax| = 100 in this case; the mean is
0.0062). See the appendix for details.

our computational model from section 2 through computer simulations
(see the appendix). A typical change in the distribution of release prob-
abilities between pools U1 and V resulting from repeated applications of
Markram’s rule is shown in the Figures 7A and 7B. After 10 learning steps,
the weights wi := (1/N)

∑
v∈V

∑
u∈Ui

rvuāvu for all i ∈ {1, . . . ,n} resulting
from Markram’s rule differ on average by 0.0062 (normalized error; see Fig-
ure 7C) from the weights Wi resulting from applications of Hebb’s rule for
an artificial neural network with the corresponding parameter values and
the same initial weights. For the application of Hebb’s learning rule, y was
computed by σ(

∑n
i=1 wixi) for the sigmoidal function σ given by the right-

hand side of equation 2.6, with the same inputs xi that are used as firing
probabilities for the pools U1, . . . ,Un.

These results show that due to the large trial-to-trial variability of neu-
ronal firing in our model from section 2, iterated local applications of Mark-
ram’s temporal learning rule implement with high fidelity Hebb’s learning
rule for space-rate coding on the network level.

5 Discussion

We have addressed specific links between details of realistic models for bi-
ologic neurons and synapses on one hand and resulting large-scale effects
for computations with populations of neurons on the other hand. In partic-
ular we have investigated possible macroscopic effects of the well-known
stochastic nature of synaptic transmission. This aspect has been neglected
in previous analytical studies of the dynamics of populations of spiking
neurons (see, for example, the references in Gerstner, 1999a, 1999b).
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In section 2 we showed that the unreliability of synaptic transmission
suffices to explain the possibility of fast analog computations in space-rate
coding on the network level. In fact, theoretically any given bounded contin-
uous function can be approximated arbitrarily close by such networks, with
a computation time of not more than 20 ms. In contrast to other possible ex-
planations of analog computation in space-rate coding, this model spreads
firing activity uniformly among the neurons and therefore is able to explain
the large trial-to-trial variability in neuronal firing patterns. Whereas it is oc-
casionally conjectured that synaptic unreliability “averages out” on the net-
work level, and hence causes no significant macroscopic effects, we showed
in section 2 through rigorous theoretical analysis and extensive computer
simulations that synaptic unreliability may be essentially involved in gen-
erating a “graded response” for computations on the network level. Fur-
thermore, we showed that most of these results are quite robust, since they
hold for arbitrary assignments of synaptic failure probabilities and arbitrary
distributions of PSP amplitudes.

We also investigated a specific source of systematic noise for analog
computation in space-rate coding that arises in this model. In contrast to
sampling errors, this systematic noise is not likely to disappear when the
pool size N is chosen very large. However, our computer simulations sug-
gest that the computational effect of this systematic noise is rather small.
We showed in section 2.3 that this source of systematic noise is removed
if synaptic connections consist of single release sites and the “weights” of
synaptic connections are encoded in release probabilities of synapses rather
than in the amplitudes of postsynaptic responses caused by the releases.
We also showed in subsection 2.5 that our computational model gives rise
to an analog version of the familiar model of a synfire chain. This analog
version appears to be computationally more powerful than the classical bi-
nary version, and its firing behavior appears to be more consistent with
experimental data.

In section 3 we addressed the question of what additional computational
operations on the network level are supported by other prominent features
of biological neurons and microcircuits, such as the refractory behavior of
neurons and local recurrent connections. For that purpose, we have moved
from computations on static inputs toward an analysis of computations on
time series, which is arguably a biologically particular relevant computa-
tional domain. Various filtering properties of biological neural systems have
already been addressed in Koch (1999). We have exhibited specific macro-
scopic effects for analog computations on time series in space-rate coding
that are caused by unreliable synapses in combination with the decaying
parts of postsynaptic potentials and refractory effects on the neuron level,
and in combination with recurrent connections in microcircuits. We have
shown that through these features, a rich repertoire of linear filters, espe-
cially arbitrary time-invariant linear filters with finite and infinite impulse
response, can be approximated on the level of space-rate coding in pop-
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ulations of neurons. In combination with the results from section 2, this
shows that for computations on time series, in principle the full computa-
tional power of the artificial neural networks proposed in Back and Tsoi
(1991) can be emulated by networks of biologically realistic neurons with
space-rate coding.

In section 4 we investigated macroscopic effects of a local learning rule
for spiking neurons that is empirically supported by the experiments of
Markram, Lübke, Frotscher, and Sakmann (1997). Whereas this learning
rule is usually discussed only in the context of temporal coding in small
neuronal circuits, we showed that the same learning rule gives rise to a
Hebbian learning rule on the network level with space-rate coding (hence
without a coding of relevant information in firing times). This link between
the Markram rule and Hebbian learning for space-rate coding appears to
be obvious on first sight. A closer look, however, shows that it requires the
large trial-to-trial variability of neuronal firing that is provided—in contrast
to previous models—by the model for analog computation with space-rate
coding based on unreliable synapses that was presented in section 2.

Appendix

A.1 Synapse Model. In all the simulations reported in this article, a con-
nection between a neuron u ∈ Ui and v ∈ V is modeled by dvu independent
release sites, where dvu may vary for different pairs u, v of neurons. The
release probability pvu is assumed to be equal at all dvu release sites of one
connection. In the case of a release at a single release site, the amplitude
of the resulting EPSP (IPSP), also known as quantal size, is drawn from a
gaussian distribution with mean q̄vu and variance q̃vu. For such a connection,
the probability density function φvu of EPSP (IPSP) amplitudes in the case
of a release is given by (we skip the indices vu for sake of brevity)

φ(a) = 1
r

d∑
k=1

(
d
k

)
pk(1− p)d−kϕ

(
a; kq̄,

√
kq̃2

)
,

where ϕ
(·; q̄, q̃

)
is the normal probability density function with mean q̄ and

variance q̃ and r = 1 − (1 − p)n is the probability that at least at one of the
release sites some vesicle is released, that is, r is the “nonfailure probability.”
The mean ā := ∫

aφ(a)da and the second moment â := ∫
a2φ(a)da of such

a distribution are given by ā = q̄dp and â = 1
r

(
q̄2(dp2(d− 1)+ dp)+ q̃2dp

)
.

Note that d = 1 yields ā = q̄ and â = q̄2 + q̃2.

A.2 Neuron Model. For all simulations we have used the spike-response
model as described in Gerstner (1999b). The time course of an EPSP (IPSP)
is modeled by a

τ1−τ2
(e−t/τ1 − e−t/τ2), where τ1 and τ2 describe the rise and fall
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time of the PSP, and a defines the amplitude.10 If not stated otherwise, we
have set τ1 = 5 ms, τ2 = 12 ms for the EPSPs and τ1 = 10 ms, τ2 = 12 ms
for the slower IPSPs. The refractory behavior is modeled by the function
η(t) = −Re−t/τr where τr = 4 ms was used for all simulations. R was chosen
to be equal to the threshold of the neuron.

A.3 Synaptic Parameters. The parameters dvu, pvu, q̄vu, and q̃vu for a con-
nection between a neuron u ∈ Ui and v ∈ V are chosen independently
from distributions reported in the literature. The number of release sites nvu
was chosen randomly from the set {1, 2, 3, 4, 5}Markram, Lübke, Frotscher,
Roth, and Sakmann (1997). The release probabilities pvu are drawn from
an exponential distribution (Huang & Stevens, 1997) with mean pi (see Fig-
ure 1B for an example). The mean quantal sizes q̄vu are drawn from a normal
distribution with mean q̄i and a variance of 0.1|q̄i|. In accordance with the
results reported in Auger et al. (1998), we have chosen the standard de-
viation of the quantal sizes q̃vu = 0.05q̄vu. pi and q̄i were chosen to reflect
different “effective weights” wi between pool Ui and pool V, as specified in
the caption of Figure 1.

A.4 Second-Order Approximation of σ2
v . We define the average error

E between σ 2
v and the second-order polynomial Aµ2

v + Bµv + C as E :=
1
2

∫
[0, 1]n(σ

2
v − (Aµ2

v + Bµv + C))2 dx. We want to find the values A0, B0,
and C0 for the parameters A, B, and C such that E assumes its minimum
Emin. Therefore, we simultaneously solve the equations δE

δA = 0, δE
δB = 0 and

δE
δC = 0. After some calculations one gets

A0 = − 1
N

∑
i w4

i∑
i w4

i + (5/2)
∑

i
∑

j6=i wiwj
,

B0 =
∑

i ŵiwi∑
i w2

i
− 1

N

∑
i w3

i∑
i w2

i
− A0∑

i w2
i

∑
i

w3
i +

∑
i

∑
j6=i

w2
i wj

 ,
C0 = 1

2

∑
i
(ŵi − B0wi)− 1

3N

∑
i

w2
i −

A0

4

∑
i

∑
j6=i

wiwj − A0

3

∑
i

w2
i .

In the limit N → ∞ these equations reduce to A0 = 0, B0 =
∑

i
ŵiwi∑
i
w2

i
, and

C0 = 1
2
∑

i(ŵi−Bwi). These solutions lead to a minimal value of the average
error E of

Emin =
(∑

i ŵ2
i
) (∑

i w2
i
)− (∑i ŵiwi

)2
12
∑

i w2
i

.

10 If the two time constants of these two exponentially decaying functions converge
to a common value, then their difference converges to an “α-function,” which is another
common description of the time course of a PSP.
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With the definitions w̄v = 〈wv1, . . . ,wvn〉, ŵv = 〈ŵv1, . . . , ŵvn〉 and cosϕ =
(wv · ŵv)/(‖wv‖ · ‖ŵv‖) this reduces to Emin = ‖ŵ‖

2

12 (1− cos2 ϕ) .

A.5 Frequency Response of a Time-Invariant Linear Filter. The trans-
fer function (in terms of the z-transformation. Haykin, 1996) of a time-
invariant linear filter that transforms a time series x(t) into a time series
y(t) =∑k0

k=0 bkx(t− k)−∑k0
k=1 aky(t− k) is given by H(z) = (∑k0

k=0 bkz−k)/(1+∑k0
k=1 akz−k), where z is a complex variable. Setting z = ej2π f (j = √−1), we

get the filter frequency response denoted by H(ej2π f ), where f denotes the
frequency in hertz. Expressing H(ej2π f ) in its polar form |H( f )|ejψ( f ), one
defines the frequency response of the filter in terms of two components: the
amplitude response |H( f )| and the phase response ψ( f ). These two quanti-
ties have the following meaning: Obviously, if one applies a sine wave with
frequency f at the input, the output of a linear filter is also a sine wave, but
with different amplitude and phase. The amplitude response |H( f )| is the
ratio between the amplitudes of the output and the input sine wave. The
phase response ψ( f ) is the difference between the phases of the output and
the input sine waves. In that way, one can measure for each frequency f the
amplitude and phase response, as was done in the simulations reported in
Figure 6.

A.6 Details of Simulations Reported in Figures 5 and 6. The network
that approximates a low-pass filter (cf. Figure 5C) consists of a single excita-
tory presynaptic pool U1 and the postsynaptic pool V. The effective weight
between U1 and V is w1 = 20. For the time constants of the EPSPs we have
chosen τ1 = 25 ms and τ2 = 26 ms. For the network that approximates a
bandpass filter (cf. Figure 5B), there were in addition inhibitory recurrent
connections from pool V to pool V with an effective weight w̃1 = −40
(τ1 = 30 ms and τ2 = 26 ms). The effective weight from pool U1 to pool V
was w1 = 130 (τ1 = 10 ms and τ2 = 11 ms).

A.7 Details to Simulations Reported in Figure 7. We performed 300
simulations for the model from section 2 for n = 6,N = 200 with different
values of β and different sets of initial release probabilities pvu (and hence
different sets of initial weights wi = (1/N)

∑
v∈V

∑
u∈Ui

rvuāvu). Throughout
these simulations, we used synapses with just a single release site. Each of
these 300 simulations consisted of 10 individual trials with different inputs
〈x(l)1 , . . . , x(l)6 〉, l = 1, . . . , 10, where the inputs x(l)i are drawn from normal
distributions with mean x̄i and variance x̂2

i (x̄i ∈ [0, 1] and x̂i ∈ [0.1, 0.3]
were chosen uniformly from the given interval for each simulation). In each
trial, we simulated a network of spiking neurons and applied Markram’s
rule locally. The release probability pvu of a synapse between neuron u ∈ Ui
and v ∈ V was increased by β if the postsynaptic neuron fired within 20 ms
after the presynaptic neuron. After these 10 trials, we compared the resulting
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effective weights wnew
i = (1/N)∑v∈V

∑
u∈Ui

rvuāvu with the weights Wnew
i =

Wold
i + Nβ āi

∑10
l=1 x(l)i y(l) predicted by the Hebb rule, where āi is the mean

PSP amplitude resulting from spikes of neurons u ∈ Ui and y(l) is given by
y(l) = σ(∑6

i=1 wix
(l)
i ) for the sigmoidal function given by the right-hand side

of equation 2.6.
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Markram, H., Lübke, J., Frotscher, M., Roth, A., & Sakmann, B. (1997). Physi-
ology and anatomy of synaptic connections between thick tufted pyramidal
neurons in the developing rat neocortex. J. Physiology, 500(2), 409–440.
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