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In my lecture I want to sketch a ﬂew branch of generalized
recursion theory: invariant (-~recursion theory. p is any limit
ordinal in the following.

A set AS Ip is called. @-recursively _enumerable ( @-r.e.)
if it is definable over Lg by some i} formula ¢ (see
Friedman and Sacks [1]). Observe that this is really a very
intuitive definition. Generate successively the levels
LysLyreesDyp 5ee (y<(@) of the constructible hlerarchy up
to (3 . Enumerate at every step ¥ those elements 2z dinto A
which satisfy Lx.h @(z) and which have not already been
enumerated before.

The example shows that the general concept of a recursively
enumerable set -as described by Post [2] in 1944~ does not
require any strong closure conditions of the underlying domain

like admissiblity.

* The author is supported by the Heisenberg-program of the

Deutsche Forschungsgemelnschaft.
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A function £ : Lﬂ-; LB i1s called @-recursive if its
graph 1s {(i-r.e.. ' '

Cousider the group of all ﬁ—reCufsive functions which map
Lf! one-one onto LF toggther with composition of maps. A
property of subsets of I.(3 is éalled G-invariant Oor recur-
sively invariant if for every' fe€G some set Beg Lp has
this property if and only if f[B] has it. '

Felix Klein suggested in his Erlagger Programm (i872) tp
define branches of mathematics in terms of a space X‘ and a
group G of transformations acting on that space. The branch of
mathematics determined by X and G 1s the study of G-invar-
iant properties.

L, and the previously defined group G determine for

[

p: w classical recursion theory and for .O = o« (o admissible)

o -recursion theory.

Let ué'ﬁow look whether there is an appropriate notion of
finiteness in invariant p—recursion theory. Any recursively
invariant class of p—recursive bounded (i.e. & Lyi fog;;ome
y<f# ) subsets of Ly is a candidate for such a notion. It is
obvious that there exists a largest such cla557Which/Qe caii -I.
We will see in the following that there are severalyéood reasons
to take I as the notion of finiteness in_invariané {3-recursion
theory. The elements of I are called iffinite sets, If p is
an admissible ordinal o then i-finite iﬁ-équi;aient to

a-finite.

o

Define o1cf(d := the least § « 3 (there exists some
(-recursive £ : é >(3 with range unbounded in (3 e
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‘Iemma 1 _: I is a (-recursive subset of Ly - In fact

I = i{xe L4l Ly F [cardinality(x) < ofefp ]} .

The prodf 1s not difficult but relies heavily on the fine
structure of ' L (collapsing of Skolem hulls).

Every (B -r.e. set :A can be enumerated in olcfp many
steﬁé, i.e. fhere exlsts a (-recursive function f : atcf(s
-—)Lp ,yhAY‘,' such that A=U{A¥Iy<¢1cf(3} .Thus,
every single x € A is enumerated after am i-finite number of
steps. It is easy to see that. I 1s the only recursively in-
variant class of (8 -recursive bounded subsets of Iq; which
is in this sense coherent with the notion of a (-r.e. set.
‘Further for any i-finite subset K of A we have K ¢ AX
for some i-finite Y This property is important for priority
constructions. It implies that every true i-finite neighborhood
condition about A settles down at some point of the -construc-
_tion.

Another useful pfoperty 1s the followingi: Every (i-recur-
sive subset of an i-finite set 1s again i-finite,

Consider for any limit ordinal 3 the structure
Oy := <Lp - I;1,&,0> where &:= e MIpal and T is
the canonical (3-recursive truth predicate for Z&o LG formulas
in L{3 . Cln is construed as a set with urelements as )
in Barwise [3], where Lp ~-TI is the underlying collection

of urelements.
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Theorem 2 : Clﬁ is an admisasible structure with urelements.
: ‘ i

For every set M ¢ L(; : .
¥ is = ,(4,) Lg <=> M is 21(A1) 0qa .
Further the sets in the structure Clﬂ are exactly the i-finite

sets,

Corollary 3 : Assume that ‘ﬁ is a countable limit ordinal.

Let £ e I’(; be some (B-recursive language ar'ui let .'.L' be a
3-r.e. set of sentences in the language €  with i-finite dis-
junctions and conjunctiouns, :

If every i-finite set Ty T has a model, then' T has a
model. ' '

Proof of the Corollary : Apply the Barwise Compactness Theorem
[3] to a{; ° .

Remark : The compactness thedfem does not hold for any larger

notion .of "finite" in L -

The preceding‘compactness theorem (Corollary 3)‘can be
used to show that for every countable (3 invariaﬁt (3-recursion
theory can be characterized in terms of absoluteness br’model
theoretic invariance as this effect was called ﬁj K#eisel [4].
The concept of model theoretic invariance is useful in order to
understand the mathematical meaning of coﬁﬁtféfioné iﬁ recﬁrsion
theory. The situation i1s analogous as in first order logic where
the completeness theorem gives a mathemétical meaning to formal
proofs.

The counnection between model theoretic invariance and re-

curgive invariance is the following : The notion of a "finite"
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set 1s_recuréively inﬁariant in every recursion theory which can

be characterized in terms of model theoretie invariance.

In order to get an intrinsic notion of a computation rela-

tive to jan oracle B s LB one can extend the Kripke equation

/

S
calculus in a canounical way. The essential rule allows to survey
‘§~finite many subcomputations in a computation. Every computa=~

tion has the structure of an i-finitely branching tree :

‘57“‘4- endequation

axioms of the form x & B ,

\x¢ B, F(x,y) =z where F
W, is some rudimentary function
We say that A 1is computable from B 1f the characteris-
tic function of A can be computed from B in this equation
calculus. We say that A 1is i-finitely computable from B if
this can be done by using i-finite computatiouns only. B 1s
called semigeneric if every.equation which can be computed from
B can be computed from B with an i-finite computation. For a

semigeneric set B the preceding two notions of reducibility

colncide for every set A .

Lemma‘4 : . .
a) PFor countable (3 A 1is computable from B iff A is
implicitly invariantly definable from B (see [6]).

b) A is i-finiteiy computable from B I1ff there exists a

-r.e. set W "guch that for every x e Lp H
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c,(x) =4 « I i-finite K,H(<x,iK,H>e WA K B A H <Ly - B)
(c, is the characteriétic function of A ).

c) B ié-semigeneric 1£f for every relation R < Lnﬁ* Lﬁ of
the form _ ' ’

R(x,y) « 3 i-finite K,H(< x,y,K,Hye W AKeBaHeLg- B)
with W (l-r.e. and dom R i-finite : Fhere exlists an

i-finite function £ € R with dom £ = dom R

The relation in b) is not trénsitivé and therefore we con-
sider instead the following reducibility relation .: '

A <y B : & there exists a (3-r.e. set W such that for

all i-finite H,,H,

H, & A ¢ Ji-finite K,H(<H;,1,K,Hye WA KB AHeLg~B)

1
and

Hy e Lg= B¢ 3i-finite K,H(< Hy,2,K,H>eW A KaB aHelg - B).

The associated equivalence classes are called ifdegreee;;For

admigsible o they coincide with the & -degrees.

Every i—degree is recursively invariant. The i-degreef
(i.e. the equivalence class of the empty set) coutains exactly
the (3-recursive sets. As usual one gets immediately that there
exists a maximal (3-r.e. 1-degree O' which is strictly greater
than O . There is no trivial way to show the existencé of an
intermediate (3-r.e. i-degree.

Except for a few @ (where it 1is séill open) one caun
understand the structure of the (3-r.e. (3-degrees (seel1]) as a

substruéiure of the i-degrees.



Theorem 5 ¢ 'Fo;'everf limit ordinal ﬁ there exist ‘}—r.e.
sets A , B such that A 4, B and B 4, A. ‘
-The 22222 ‘ié gi#;ﬁ fn the most interesting case where (3 is
strongly 1nadmlssible (i.e. eofcf(y<(3*) by a priority construc-
tion following Friedman [5]. The combinatorial primeiple < can
here be eleminated (this may be helpful for applications to
other 1nadmissihle sets)

Observe that for eVery p the i-degrees coincide with the
degrees ia the admissible collapse Clp Thus Theorem 5 con-
- tains as a special case the solution of Post's Problem for some

enormously fat admissible sets..

Theorem 6 : For every iimit ordinal (3 there exist p—r.e.
sets A , B such that A is not computable from B and B

is not-computable from A .

The proof is slightly more difficult thaun the proof of Theorem
5 . Wemake A and B in addition semigemeric. For this ome
needs ¢ .

Theorem 7 : For many strongly inadmissible {3 there are 3-r.e.
sets A such that O &i A but S £, A for every simple set
S (see [6] for the definition of simple).

The proof is a first example of an infinite preservation stra-
tegy in the strongly iunadmissible case. Besides < it uses a
new combinatorial argumeut . We expect that refinements of the

applied strategy will lead to a splitting theorem for i-degrees.
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We had mentioned the definition of a semigeneric set be-
cause at this point an important new effect arises in the step
from o~ to p-recursion theory. Several equivalent definitiouns
of "hyperregular"in¢x-recursion>theory lead to differeunt classes
in 3-recursion theory. For some strongly inadmissible (3 there
are 3-r.e. sets B such that every computation from B has an

i-finite lergth but B 41is not semigeneric.

All details can be found -in the forthcoming paper [6].
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